# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from __future__ import annotations # for forward references import hashlib import json import os from collections.abc import Generator from contextlib import contextmanager from enum import StrEnum from pathlib import Path from typing import Any, Literal, cast from openai import NOT_GIVEN from llama_stack.log import get_logger logger = get_logger(__name__, category="testing") # Global state for the recording system _current_mode: str | None = None _current_storage: ResponseStorage | None = None _original_methods: dict[str, Any] = {} from openai.types.completion_choice import CompletionChoice # update the "finish_reason" field, since its type definition is wrong (no None is accepted) CompletionChoice.model_fields["finish_reason"].annotation = Literal["stop", "length", "content_filter"] | None CompletionChoice.model_rebuild() REPO_ROOT = Path(__file__).parent.parent.parent DEFAULT_STORAGE_DIR = REPO_ROOT / "tests/integration/recordings" class InferenceMode(StrEnum): LIVE = "live" RECORD = "record" REPLAY = "replay" def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str: """Create a normalized hash of the request for consistent matching.""" # Extract just the endpoint path from urllib.parse import urlparse parsed = urlparse(url) normalized = {"method": method.upper(), "endpoint": parsed.path, "body": body} # Create hash - sort_keys=True ensures deterministic ordering normalized_json = json.dumps(normalized, sort_keys=True) return hashlib.sha256(normalized_json.encode()).hexdigest() def get_inference_mode() -> InferenceMode: return InferenceMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "replay").lower()) def setup_inference_recording(): """ Returns a context manager that can be used to record or replay inference requests. This is to be used in tests to increase their reliability and reduce reliance on expensive, external services. Currently, this is only supported for OpenAI and Ollama clients. These should cover the vast majority of use cases. Two environment variables are supported: - LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Must be 'live', 'record', or 'replay'. Default is 'replay'. - LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in. Default is 'tests/integration/recordings'. The recordings are stored as JSON files. """ mode = get_inference_mode() if mode == InferenceMode.LIVE: return None storage_dir = os.environ.get("LLAMA_STACK_TEST_RECORDING_DIR", DEFAULT_STORAGE_DIR) return inference_recording(mode=mode, storage_dir=storage_dir) def _serialize_response(response: Any) -> Any: if hasattr(response, "model_dump"): data = response.model_dump(mode="json") return { "__type__": f"{response.__class__.__module__}.{response.__class__.__qualname__}", "__data__": data, } elif hasattr(response, "__dict__"): return dict(response.__dict__) else: return response def _deserialize_response(data: dict[str, Any]) -> Any: # Check if this is a serialized Pydantic model with type information if isinstance(data, dict) and "__type__" in data and "__data__" in data: try: # Import the original class and reconstruct the object module_path, class_name = data["__type__"].rsplit(".", 1) module = __import__(module_path, fromlist=[class_name]) cls = getattr(module, class_name) if not hasattr(cls, "model_validate"): raise ValueError(f"Pydantic class {cls} does not support model_validate?") return cls.model_validate(data["__data__"]) except (ImportError, AttributeError, TypeError, ValueError) as e: logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_validate: {e}") try: return cls.model_construct(**data["__data__"]) except Exception as e: logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_construct: {e}") return data["__data__"] return data class ResponseStorage: """Handles SQLite index + JSON file storage/retrieval for inference recordings.""" def __init__(self, test_dir: Path): self.test_dir = test_dir self.responses_dir = self.test_dir / "responses" self._ensure_directories() def _ensure_directories(self): self.test_dir.mkdir(parents=True, exist_ok=True) self.responses_dir.mkdir(exist_ok=True) def store_recording(self, request_hash: str, request: dict[str, Any], response: dict[str, Any]): """Store a request/response pair.""" # Generate unique response filename short_hash = request_hash[:12] response_file = f"{short_hash}.json" # Serialize response body if needed serialized_response = dict(response) if "body" in serialized_response: if isinstance(serialized_response["body"], list): # Handle streaming responses (list of chunks) serialized_response["body"] = [_serialize_response(chunk) for chunk in serialized_response["body"]] else: # Handle single response serialized_response["body"] = _serialize_response(serialized_response["body"]) # If this is an Ollama /api/tags recording, include models digest in filename to distinguish variants endpoint = request.get("endpoint") if endpoint in ("/api/tags", "/v1/models"): digest = _model_identifiers_digest(endpoint, response) response_file = f"models-{short_hash}-{digest}.json" response_path = self.responses_dir / response_file # Save response to JSON file with open(response_path, "w") as f: json.dump({"request": request, "response": serialized_response}, f, indent=2) f.write("\n") f.flush() def find_recording(self, request_hash: str) -> dict[str, Any] | None: """Find a recorded response by request hash.""" response_file = f"{request_hash[:12]}.json" response_path = self.responses_dir / response_file if not response_path.exists(): return None return _recording_from_file(response_path) def _model_list_responses(self, short_hash: str) -> list[dict[str, Any]]: results: list[dict[str, Any]] = [] for path in self.responses_dir.glob(f"models-{short_hash}-*.json"): data = _recording_from_file(path) results.append(data) return results def _recording_from_file(response_path) -> dict[str, Any]: with open(response_path) as f: data = json.load(f) # Deserialize response body if needed if "response" in data and "body" in data["response"]: if isinstance(data["response"]["body"], list): # Handle streaming responses data["response"]["body"] = [_deserialize_response(chunk) for chunk in data["response"]["body"]] else: # Handle single response data["response"]["body"] = _deserialize_response(data["response"]["body"]) return cast(dict[str, Any], data) def _model_identifiers_digest(endpoint: str, response: dict[str, Any]) -> str: def _extract_model_identifiers(): """Extract a stable set of identifiers for model-list endpoints. Supported endpoints: - '/api/tags' (Ollama): response body has 'models': [ { name/model/digest/id/... }, ... ] - '/v1/models' (OpenAI): response body is: [ { id: ... }, ... ] Returns a list of unique identifiers or None if structure doesn't match. """ items = response["body"] idents = [m.model if endpoint == "/api/tags" else m.id for m in items] return sorted(set(idents)) identifiers = _extract_model_identifiers() return hashlib.sha256(("|".join(identifiers)).encode("utf-8")).hexdigest()[:8] def _combine_model_list_responses(endpoint: str, records: list[dict[str, Any]]) -> dict[str, Any] | None: """Return a single, unioned recording for supported model-list endpoints.""" seen: dict[str, dict[str, Any]] = {} for rec in records: body = rec["response"]["body"] if endpoint == "/v1/models": for m in body: key = m.id seen[key] = m elif endpoint == "/api/tags": for m in body.models: key = m.model seen[key] = m ordered = [seen[k] for k in sorted(seen.keys())] canonical = records[0] canonical_req = canonical.get("request", {}) if isinstance(canonical_req, dict): canonical_req["endpoint"] = endpoint body = ordered if endpoint == "/api/tags": from ollama import ListResponse body = ListResponse(models=ordered) return {"request": canonical_req, "response": {"body": body, "is_streaming": False}} async def _patched_inference_method(original_method, self, client_type, endpoint, *args, **kwargs): global _current_mode, _current_storage if _current_mode == InferenceMode.LIVE or _current_storage is None: if endpoint == "/v1/models": return original_method(self, *args, **kwargs) else: return await original_method(self, *args, **kwargs) # Get base URL based on client type if client_type == "openai": base_url = str(self._client.base_url) # the OpenAI client methods may pass NOT_GIVEN for unset parameters; filter these out kwargs = {k: v for k, v in kwargs.items() if v is not NOT_GIVEN} elif client_type == "ollama": # Get base URL from the client (Ollama client uses host attribute) base_url = getattr(self, "host", "http://localhost:11434") if not base_url.startswith("http"): base_url = f"http://{base_url}" else: raise ValueError(f"Unknown client type: {client_type}") url = base_url.rstrip("/") + endpoint method = "POST" headers = {} body = kwargs request_hash = normalize_request(method, url, headers, body) if _current_mode == InferenceMode.REPLAY: # Special handling for model-list endpoints: return union of all responses if endpoint in ("/api/tags", "/v1/models"): records = _current_storage._model_list_responses(request_hash[:12]) recording = _combine_model_list_responses(endpoint, records) else: recording = _current_storage.find_recording(request_hash) if recording: response_body = recording["response"]["body"] if recording["response"].get("is_streaming", False): async def replay_stream(): for chunk in response_body: yield chunk return replay_stream() else: return response_body else: raise RuntimeError( f"No recorded response found for request hash: {request_hash}\n" f"Request: {method} {url} {body}\n" f"Model: {body.get('model', 'unknown')}\n" f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record" ) elif _current_mode == InferenceMode.RECORD: if endpoint == "/v1/models": response = original_method(self, *args, **kwargs) else: response = await original_method(self, *args, **kwargs) # we want to store the result of the iterator, not the iterator itself if endpoint == "/v1/models": response = [m async for m in response] request_data = { "method": method, "url": url, "headers": headers, "body": body, "endpoint": endpoint, "model": body.get("model", ""), } # Determine if this is a streaming request based on request parameters is_streaming = body.get("stream", False) if is_streaming: # For streaming responses, we need to collect all chunks immediately before yielding # This ensures the recording is saved even if the generator isn't fully consumed chunks = [] async for chunk in response: chunks.append(chunk) # Store the recording immediately response_data = {"body": chunks, "is_streaming": True} _current_storage.store_recording(request_hash, request_data, response_data) # Return a generator that replays the stored chunks async def replay_recorded_stream(): for chunk in chunks: yield chunk return replay_recorded_stream() else: response_data = {"body": response, "is_streaming": False} _current_storage.store_recording(request_hash, request_data, response_data) return response else: raise AssertionError(f"Invalid mode: {_current_mode}") def patch_inference_clients(): """Install monkey patches for OpenAI client methods and Ollama AsyncClient methods.""" global _original_methods from ollama import AsyncClient as OllamaAsyncClient from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions from openai.resources.completions import AsyncCompletions from openai.resources.embeddings import AsyncEmbeddings from openai.resources.models import AsyncModels # Store original methods for both OpenAI and Ollama clients _original_methods = { "chat_completions_create": AsyncChatCompletions.create, "completions_create": AsyncCompletions.create, "embeddings_create": AsyncEmbeddings.create, "models_list": AsyncModels.list, "ollama_generate": OllamaAsyncClient.generate, "ollama_chat": OllamaAsyncClient.chat, "ollama_embed": OllamaAsyncClient.embed, "ollama_ps": OllamaAsyncClient.ps, "ollama_pull": OllamaAsyncClient.pull, "ollama_list": OllamaAsyncClient.list, } # Create patched methods for OpenAI client async def patched_chat_completions_create(self, *args, **kwargs): return await _patched_inference_method( _original_methods["chat_completions_create"], self, "openai", "/v1/chat/completions", *args, **kwargs ) async def patched_completions_create(self, *args, **kwargs): return await _patched_inference_method( _original_methods["completions_create"], self, "openai", "/v1/completions", *args, **kwargs ) async def patched_embeddings_create(self, *args, **kwargs): return await _patched_inference_method( _original_methods["embeddings_create"], self, "openai", "/v1/embeddings", *args, **kwargs ) def patched_models_list(self, *args, **kwargs): async def _iter(): for item in await _patched_inference_method( _original_methods["models_list"], self, "openai", "/v1/models", *args, **kwargs ): yield item return _iter() # Apply OpenAI patches AsyncChatCompletions.create = patched_chat_completions_create AsyncCompletions.create = patched_completions_create AsyncEmbeddings.create = patched_embeddings_create AsyncModels.list = patched_models_list # Create patched methods for Ollama client async def patched_ollama_generate(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_generate"], self, "ollama", "/api/generate", *args, **kwargs ) async def patched_ollama_chat(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_chat"], self, "ollama", "/api/chat", *args, **kwargs ) async def patched_ollama_embed(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_embed"], self, "ollama", "/api/embeddings", *args, **kwargs ) async def patched_ollama_ps(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_ps"], self, "ollama", "/api/ps", *args, **kwargs ) async def patched_ollama_pull(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_pull"], self, "ollama", "/api/pull", *args, **kwargs ) async def patched_ollama_list(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_list"], self, "ollama", "/api/tags", *args, **kwargs ) # Apply Ollama patches OllamaAsyncClient.generate = patched_ollama_generate OllamaAsyncClient.chat = patched_ollama_chat OllamaAsyncClient.embed = patched_ollama_embed OllamaAsyncClient.ps = patched_ollama_ps OllamaAsyncClient.pull = patched_ollama_pull OllamaAsyncClient.list = patched_ollama_list def unpatch_inference_clients(): """Remove monkey patches and restore original OpenAI and Ollama client methods.""" global _original_methods if not _original_methods: return # Import here to avoid circular imports from ollama import AsyncClient as OllamaAsyncClient from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions from openai.resources.completions import AsyncCompletions from openai.resources.embeddings import AsyncEmbeddings from openai.resources.models import AsyncModels # Restore OpenAI client methods AsyncChatCompletions.create = _original_methods["chat_completions_create"] AsyncCompletions.create = _original_methods["completions_create"] AsyncEmbeddings.create = _original_methods["embeddings_create"] AsyncModels.list = _original_methods["models_list"] # Restore Ollama client methods if they were patched OllamaAsyncClient.generate = _original_methods["ollama_generate"] OllamaAsyncClient.chat = _original_methods["ollama_chat"] OllamaAsyncClient.embed = _original_methods["ollama_embed"] OllamaAsyncClient.ps = _original_methods["ollama_ps"] OllamaAsyncClient.pull = _original_methods["ollama_pull"] OllamaAsyncClient.list = _original_methods["ollama_list"] _original_methods.clear() @contextmanager def inference_recording(mode: str, storage_dir: str | Path | None = None) -> Generator[None, None, None]: """Context manager for inference recording/replaying.""" global _current_mode, _current_storage # Store previous state prev_mode = _current_mode prev_storage = _current_storage try: _current_mode = mode if mode in ["record", "replay"]: if storage_dir is None: raise ValueError("storage_dir is required for record and replay modes") _current_storage = ResponseStorage(Path(storage_dir)) patch_inference_clients() yield finally: # Restore previous state if mode in ["record", "replay"]: unpatch_inference_clients() _current_mode = prev_mode _current_storage = prev_storage