# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List, Optional, Union from llama_models.datatypes import CoreModelId from openai import OpenAI from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, CompletionResponse, EmbeddingsResponse, Inference, LogProbConfig, Message, ResponseFormat, ResponseFormatType, SamplingParams, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, build_model_entry, ) from llama_stack.providers.utils.inference.openai_compat import ( convert_message_to_openai_dict, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, content_has_media, request_has_media, ) from .config import CentMLImplConfig # Update this if list of model changes. MODEL_ALIASES = [ build_model_entry( "meta-llama/Llama-3.2-3B-Instruct", CoreModelId.llama3_2_3b_instruct.value, ), build_model_entry( "meta-llama/Llama-3.3-70B-Instruct", CoreModelId.llama3_3_70b_instruct.value, ), ] class CentMLInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData): """ Adapter to use CentML's serverless inference endpoints, which adhere to the OpenAI chat/completions API spec, inside llama-stack. """ def __init__(self, config: CentMLImplConfig) -> None: super().__init__(MODEL_ALIASES) self.config = config async def initialize(self) -> None: pass async def shutdown(self) -> None: pass def _get_api_key(self) -> str: """ Obtain the CentML API key either from the adapter config or from the dynamic provider data in request headers. """ if self.config.api_key is not None: return self.config.api_key.get_secret_value() else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.centml_api_key: raise ValueError( 'Pass CentML API Key in the header X-LlamaStack-ProviderData as { "centml_api_key": "" }' ) return provider_data.centml_api_key def _get_client(self) -> OpenAI: """ Creates an OpenAI-compatible client pointing to CentML's base URL, using the user's CentML API key. """ api_key = self._get_api_key() return OpenAI(api_key=api_key, base_url=self.config.url) # # COMPLETION (non-chat) # async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = None, # Avoid function call in default argument. response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: """ For "completion" style requests (non-chat). """ # Instantiate sampling_params if not provided. if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse: """ Process non-streaming completion requests. If a structured output is specified (e.g. JSON schema), the adapter calls the chat completions endpoint and then converts the chat response into a plain CompletionResponse. Otherwise, it uses the regular completions endpoint. """ params = await self._get_params(request) if request.response_format is not None: # ***** HACK: Use the chat completions endpoint even for non-chat completions # This is necessary because CentML's structured output (JSON schema) support # is only available via the chat API. However, our API expects a CompletionResponse. response = self._get_client().chat.completions.create(**params) choice = response.choices[0] message = choice.message # If message.content is returned as a list of tokens, join them into a string. content = message.content if not isinstance(message.content, list) else "".join(message.content) return CompletionResponse( content=content, stop_reason="end_of_message", # ***** HACK: Hard-coded stop_reason because the chat API doesn't return one. logprobs=None, ) else: # ***** HACK: For non-structured outputs, ensure we use the completions endpoint. # _get_params may include a "messages" key due to our unified parameter builder. # We remove "messages" and instead set a "prompt" since the completions endpoint expects it. prompt_str = await completion_request_to_prompt(request) if "messages" in params: del params["messages"] params["prompt"] = prompt_str response = self._get_client().completions.create(**params) result = process_completion_response(response) # Join tokenized content if needed. if isinstance(result.content, list): result.content = "".join(result.content) return result async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) async def _to_async_generator(): # ***** HACK: For streaming structured outputs, use the chat completions endpoint. # Otherwise, use the regular completions endpoint. if request.response_format is not None: stream = self._get_client().chat.completions.create(**params) else: stream = self._get_client().completions.create(**params) for chunk in stream: yield chunk stream = _to_async_generator() if request.response_format is not None: async for chunk in process_chat_completion_stream_response(stream, request): yield chunk else: async for chunk in process_completion_stream_response(stream): yield chunk # # CHAT COMPLETION # async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = None, # Avoid function call in default argument. tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: """ For "chat completion" style requests. """ # Instantiate sampling_params if not provided. if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) # Use the chat completions endpoint if "messages" key is present. if "messages" in params: response = self._get_client().chat.completions.create(**params) else: response = self._get_client().completions.create(**params) result = process_chat_completion_response(response, request) # ***** HACK: Sometimes the returned content is tokenized as a list. # We join the tokens into a single string to produce a unified output. if request.response_format is not None: if isinstance(result.completion_message, dict): content = result.completion_message.get("content") if isinstance(content, list): result.completion_message["content"] = "".join(content) else: if isinstance(result.completion_message.content, list): updated_msg = result.completion_message.copy( update={"content": "".join(result.completion_message.content)} ) result = result.copy(update={"completion_message": updated_msg}) return result async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: params = await self._get_params(request) async def _to_async_generator(): # ***** HACK: Use the chat completions endpoint if "messages" key is present. if "messages" in params: stream = self._get_client().chat.completions.create(**params) else: stream = self._get_client().completions.create(**params) for chunk in stream: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk # # HELPER METHODS # async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict: """ Build a unified set of parameters for both chat and non-chat requests. When a structured output is specified (response_format is not None), we force the use of a "messages" array even for CompletionRequests. """ input_dict = {} media_present = request_has_media(request) llama_model = self.get_llama_model(request.model) if request.response_format is not None: if isinstance(request, ChatCompletionRequest): input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages] else: # ***** HACK: For CompletionRequests with structured output, # we simulate a chat conversation by wrapping the prompt as a single user message. prompt_str = await completion_request_to_prompt(request) input_dict["messages"] = [{"role": "user", "content": prompt_str}] else: if isinstance(request, ChatCompletionRequest): if media_present or not llama_model: input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages] else: input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model) else: input_dict["prompt"] = await completion_request_to_prompt(request) params = { "model": request.model, **input_dict, "stream": request.stream, **self._build_options(request.sampling_params, request.logprobs, request.response_format), } return params def _build_options( self, sampling_params: Optional[SamplingParams], logprobs: Optional[LogProbConfig], fmt: Optional[ResponseFormat], ) -> dict: """ Build additional options such as sampling parameters and logprobs. Also translates our response_format into the format expected by CentML's API. """ options = get_sampling_options(sampling_params) if fmt: if fmt.type == ResponseFormatType.json_schema.value: options["response_format"] = { "type": "json_schema", "json_schema": {"name": "schema", "schema": fmt.json_schema}, } elif fmt.type == ResponseFormatType.grammar.value: raise NotImplementedError("Grammar response format not supported yet") else: raise ValueError(f"Unknown response format {fmt.type}") if logprobs and logprobs.top_k: options["logprobs"] = logprobs.top_k return options # # EMBEDDINGS # async def embeddings( self, task_type: str, model_id: str, text_truncation: Optional[str], output_dimension: Optional[int], contents: List[InterleavedContent], ) -> EmbeddingsResponse: # ***** HACK/ASSERT: CentML does not support media for embeddings. # We assert here to catch any cases where media is inadvertently included. # model = await self.model_store.get_model(model_id) assert all(not content_has_media(c) for c in contents), "CentML does not support media for embeddings" # resp = self._get_client().embeddings.create( # model=model.provider_resource_id, # input=[interleaved_content_as_str(c) for c in contents], # )