# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator import asyncio from typing import Any from openai import AsyncOpenAI from llama_stack.apis.inference import * from llama_stack.apis.inference import ( OpenAIMessageParam, OpenAIResponseFormatParam, ) from llama_stack.apis.common.content_types import InterleavedContentItem from llama_stack.apis.models import Model, ModelType from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( convert_message_to_openai_dict, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( completion_request_to_prompt, interleaved_content_as_str, ) from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin from .config import RunpodImplConfig MODEL_ENTRIES = [] class RunpodInferenceAdapter( OpenAIMixin, ModelRegistryHelper, Inference, ): """ Adapter for RunPod's OpenAI-compatible API endpoints. Supports VLLM for serverless endpoint self-hosted or public endpoints. Can work with any runpod endpoints that support OpenAI-compatible API """ def __init__(self, config: RunpodImplConfig) -> None: OpenAIMixin.__init__(self) ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self.config = config def get_api_key(self) -> str: """Get API key for OpenAI client.""" return self.config.api_token def get_base_url(self) -> str: """Get base URL for OpenAI client.""" return self.config.url async def initialize(self) -> None: pass async def shutdown(self) -> None: pass def get_extra_client_params(self) -> dict[str, Any]: """Override to add RunPod-specific client parameters if needed.""" return {} async def openai_chat_completion( self, model: str, messages: list[OpenAIMessageParam], frequency_penalty: float | None = None, function_call: str | dict[str, Any] | None = None, functions: list[dict[str, Any]] | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_completion_tokens: int | None = None, max_tokens: int | None = None, n: int | None = None, parallel_tool_calls: bool | None = None, presence_penalty: float | None = None, response_format: OpenAIResponseFormatParam | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, tool_choice: str | dict[str, Any] | None = None, tools: list[dict[str, Any]] | None = None, top_logprobs: int | None = None, top_p: float | None = None, user: str | None = None, ): """Override to add RunPod-specific stream_options requirement.""" if stream and not stream_options: stream_options = {"include_usage": True} return await super().openai_chat_completion( model=model, messages=messages, frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, n=n, parallel_tool_calls=parallel_tool_calls, presence_penalty=presence_penalty, response_format=response_format, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, ) async def register_model(self, model: Model) -> Model: """ Pass-through registration - accepts any model that the RunPod endpoint serves. In the .yaml file the model: can be defined as example models: - metadata: {} model_id: qwen3-32b-awq model_type: llm provider_id: runpod provider_model_id: Qwen/Qwen3-32B-AWQ """ return model async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]: if sampling_params is None: sampling_params = SamplingParams() # Resolve model_id to provider_resource_id model = await self.model_store.get_model(model_id) provider_model_id = model.provider_resource_id or model_id request = CompletionRequest( model=provider_model_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request, self.client) else: return await self._nonstream_completion(request, self.client) async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]: """Process chat completion requests using RunPod's OpenAI-compatible API.""" if sampling_params is None: sampling_params = SamplingParams() # Resolve model_id to provider_resource_id model = await self.model_store.get_model(model_id) provider_model_id = model.provider_resource_id or model_id request = ChatCompletionRequest( model=provider_model_id, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request, self.client) else: return await self._nonstream_chat_completion(request, self.client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: AsyncOpenAI ) -> ChatCompletionResponse: params = await self._get_chat_params(request) # Make actual RunPod API call r = await client.chat.completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion( self, request: ChatCompletionRequest, client: AsyncOpenAI ) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]: params = await self._get_chat_params(request) # Make actual RunPod API call for streaming stream = await client.chat.completions.create(**params) async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_chat_params(self, request: ChatCompletionRequest) -> dict: """Convert Llama Stack request to RunPod API parameters.""" messages = [await convert_message_to_openai_dict(m, download=False) for m in request.messages] params = { "model": request.model, "messages": messages, "stream": request.stream, **get_sampling_options(request.sampling_params), } if request.stream: params["stream_options"] = {"include_usage": True} return params async def _nonstream_completion( self, request: CompletionRequest, client: AsyncOpenAI ) -> CompletionResponse: params = await self._get_completion_params(request) # Make actual RunPod API call r = await client.completions.create(**params) return process_completion_response(r) async def _stream_completion( self, request: CompletionRequest, client: AsyncOpenAI ) -> AsyncGenerator: params = await self._get_completion_params(request) # Make actual RunPod API call for streaming stream = await client.completions.create(**params) async for chunk in process_completion_stream_response(stream): yield chunk async def _get_completion_params(self, request: CompletionRequest) -> dict: """Convert Llama Stack request to RunPod API parameters.""" params = { "model": request.model, "prompt": await completion_request_to_prompt(request), "stream": request.stream, **get_sampling_options(request.sampling_params), } if request.stream: params["stream_options"] = {"include_usage": True} return params async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: # Resolve model_id to provider_resource_id model_obj = await self.model_store.get_model(model_id) model = model_obj.provider_resource_id or model_id kwargs = {} if output_dimension: kwargs["dimensions"] = output_dimension response = await self.client.embeddings.create( model=model, input=[interleaved_content_as_str(content) for content in contents], **kwargs, ) embeddings = [data.embedding for data in response.data] return EmbeddingsResponse(embeddings=embeddings) async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: # Resolve model_id to provider_resource_id model_obj = await self.model_store.get_model(model) provider_model_id = model_obj.provider_resource_id or model response = await self.client.embeddings.create( model=provider_model_id, input=input, encoding_format=encoding_format, dimensions=dimensions, user=user, ) return response