# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import uuid from collections.abc import AsyncGenerator, AsyncIterator from typing import Any import httpx from ollama import AsyncClient # type: ignore[attr-defined] from openai import AsyncOpenAI from llama_stack.apis.common.content_types import ( ImageContentItem, InterleavedContent, InterleavedContentItem, TextContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseStreamChunk, CompletionRequest, CompletionResponse, CompletionResponseStreamChunk, EmbeddingsResponse, EmbeddingTaskType, GrammarResponseFormat, InferenceProvider, JsonSchemaResponseFormat, LogProbConfig, Message, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.inference.inference import ( OpenAIChatCompletion, OpenAIChatCompletionChunk, OpenAICompletion, OpenAIEmbeddingsResponse, OpenAIEmbeddingUsage, OpenAIMessageParam, OpenAIResponseFormatParam, ) from llama_stack.apis.models import Model, ModelType from llama_stack.log import get_logger from llama_stack.providers.datatypes import ( HealthResponse, HealthStatus, ModelsProtocolPrivate, ) from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, b64_encode_openai_embeddings_response, get_sampling_options, prepare_openai_completion_params, prepare_openai_embeddings_params, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, content_has_media, convert_image_content_to_url, interleaved_content_as_str, request_has_media, ) from .models import MODEL_ENTRIES logger = get_logger(name=__name__, category="inference") class OllamaInferenceAdapter( InferenceProvider, ModelsProtocolPrivate, ): def __init__(self, url: str) -> None: self.register_helper = ModelRegistryHelper(MODEL_ENTRIES) self.url = url @property def client(self) -> AsyncClient: return AsyncClient(host=self.url) @property def openai_client(self) -> AsyncOpenAI: return AsyncOpenAI(base_url=f"{self.url}/v1", api_key="ollama") async def initialize(self) -> None: logger.info(f"checking connectivity to Ollama at `{self.url}`...") await self.health() async def health(self) -> HealthResponse: """ Performs a health check by verifying connectivity to the Ollama server. This method is used by initialize() and the Provider API to verify that the service is running correctly. Returns: HealthResponse: A dictionary containing the health status. """ try: await self.client.ps() return HealthResponse(status=HealthStatus.OK) except httpx.ConnectError as e: raise RuntimeError( "Ollama Server is not running, start it using `ollama serve` in a separate terminal" ) from e async def shutdown(self) -> None: pass async def unregister_model(self, model_id: str) -> None: pass async def _get_model(self, model_id: str) -> Model: if not self.model_store: raise ValueError("Model store not set") return await self.model_store.get_model(model_id) async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> CompletionResponse | AsyncGenerator[CompletionResponseStreamChunk, None]: if sampling_params is None: sampling_params = SamplingParams() model = await self._get_model(model_id) if model.provider_resource_id is None: raise ValueError(f"Model {model_id} has no provider_resource_id set") request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) async def _stream_completion( self, request: CompletionRequest ) -> AsyncGenerator[CompletionResponseStreamChunk, None]: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): s = await self.client.generate(**params) async for chunk in s: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["response"], ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_completion_stream_response(stream): yield chunk async def _nonstream_completion(self, request: CompletionRequest) -> CompletionResponse: params = await self._get_params(request) r = await self.client.generate(**params) choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["response"], ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_completion_response(response) async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> ChatCompletionResponse | AsyncGenerator[ChatCompletionResponseStreamChunk, None]: if sampling_params is None: sampling_params = SamplingParams() model = await self._get_model(model_id) if model.provider_resource_id is None: raise ValueError(f"Model {model_id} has no provider_resource_id set") request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, response_format=response_format, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict: sampling_options = get_sampling_options(request.sampling_params) # This is needed since the Ollama API expects num_predict to be set # for early truncation instead of max_tokens. if sampling_options.get("max_tokens") is not None: sampling_options["num_predict"] = sampling_options["max_tokens"] input_dict: dict[str, Any] = {} media_present = request_has_media(request) llama_model = self.register_helper.get_llama_model(request.model) if isinstance(request, ChatCompletionRequest): if media_present or not llama_model: contents = [await convert_message_to_openai_dict_for_ollama(m) for m in request.messages] # flatten the list of lists input_dict["messages"] = [item for sublist in contents for item in sublist] else: input_dict["raw"] = True input_dict["prompt"] = await chat_completion_request_to_prompt( request, llama_model, ) else: assert not media_present, "Ollama does not support media for Completion requests" input_dict["prompt"] = await completion_request_to_prompt(request) input_dict["raw"] = True if fmt := request.response_format: if isinstance(fmt, JsonSchemaResponseFormat): input_dict["format"] = fmt.json_schema elif isinstance(fmt, GrammarResponseFormat): raise NotImplementedError("Grammar response format is not supported") else: raise ValueError(f"Unknown response format type: {fmt.type}") params = { "model": request.model, **input_dict, "options": sampling_options, "stream": request.stream, } logger.debug(f"params to ollama: {params}") return params async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) if "messages" in params: r = await self.client.chat(**params) else: r = await self.client.generate(**params) if "message" in r: choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["message"]["content"], ) else: choice = OpenAICompatCompletionChoice( finish_reason=r["done_reason"] if r["done"] else None, text=r["response"], ) response = OpenAICompatCompletionResponse( choices=[choice], ) return process_chat_completion_response(response, request) async def _stream_chat_completion( self, request: ChatCompletionRequest ) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): if "messages" in params: s = await self.client.chat(**params) else: s = await self.client.generate(**params) async for chunk in s: if "message" in chunk: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["message"]["content"], ) else: choice = OpenAICompatCompletionChoice( finish_reason=chunk["done_reason"] if chunk["done"] else None, text=chunk["response"], ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: model = await self._get_model(model_id) assert all(not content_has_media(content) for content in contents), ( "Ollama does not support media for embeddings" ) response = await self.client.embed( model=model.provider_resource_id, input=[interleaved_content_as_str(content) for content in contents], ) embeddings = response["embeddings"] return EmbeddingsResponse(embeddings=embeddings) async def register_model(self, model: Model) -> Model: try: model = await self.register_helper.register_model(model) except ValueError: pass # Ignore statically unknown model, will check live listing if model.provider_resource_id is None: raise ValueError("Model provider_resource_id cannot be None") if model.model_type == ModelType.embedding: logger.info(f"Pulling embedding model `{model.provider_resource_id}` if necessary...") # TODO: you should pull here only if the model is not found in a list response = await self.client.list() if model.provider_resource_id not in [m.model for m in response.models]: await self.client.pull(model.provider_resource_id) # we use list() here instead of ps() - # - ps() only lists running models, not available models # - models not currently running are run by the ollama server as needed response = await self.client.list() available_models = [m.model for m in response.models] provider_resource_id = self.register_helper.get_provider_model_id(model.provider_resource_id) if provider_resource_id is None: provider_resource_id = model.provider_resource_id if provider_resource_id not in available_models: available_models_latest = [m.model.split(":latest")[0] for m in response.models] if provider_resource_id in available_models_latest: logger.warning( f"Imprecise provider resource id was used but 'latest' is available in Ollama - using '{model.provider_resource_id}:latest'" ) return model raise ValueError( f"Model '{model.provider_resource_id}' is not available in Ollama. Available models: {', '.join(available_models)}" ) model.provider_resource_id = provider_resource_id return model async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: model_obj = await self._get_model(model) if model_obj.model_type != ModelType.embedding: raise ValueError(f"Model {model} is not an embedding model") if model_obj.provider_resource_id is None: raise ValueError(f"Model {model} has no provider_resource_id set") # Note, at the moment Ollama does not support encoding_format, dimensions, and user parameters params = prepare_openai_embeddings_params( model=model_obj.provider_resource_id, input=input, encoding_format=encoding_format, dimensions=dimensions, user=user, ) response = await self.openai_client.embeddings.create(**params) data = b64_encode_openai_embeddings_response(response.data, encoding_format) usage = OpenAIEmbeddingUsage( prompt_tokens=response.usage.prompt_tokens, total_tokens=response.usage.total_tokens, ) # TODO: Investigate why model_obj.identifier is used instead of response.model return OpenAIEmbeddingsResponse( data=data, model=model_obj.identifier, usage=usage, ) async def openai_completion( self, model: str, prompt: str | list[str] | list[int] | list[list[int]], best_of: int | None = None, echo: bool | None = None, frequency_penalty: float | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_tokens: int | None = None, n: int | None = None, presence_penalty: float | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, top_p: float | None = None, user: str | None = None, guided_choice: list[str] | None = None, prompt_logprobs: int | None = None, suffix: str | None = None, ) -> OpenAICompletion: if not isinstance(prompt, str): raise ValueError("Ollama does not support non-string prompts for completion") model_obj = await self._get_model(model) params = await prepare_openai_completion_params( model=model_obj.provider_resource_id, prompt=prompt, best_of=best_of, echo=echo, frequency_penalty=frequency_penalty, logit_bias=logit_bias, logprobs=logprobs, max_tokens=max_tokens, n=n, presence_penalty=presence_penalty, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, top_p=top_p, user=user, suffix=suffix, ) return await self.openai_client.completions.create(**params) # type: ignore async def openai_chat_completion( self, model: str, messages: list[OpenAIMessageParam], frequency_penalty: float | None = None, function_call: str | dict[str, Any] | None = None, functions: list[dict[str, Any]] | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_completion_tokens: int | None = None, max_tokens: int | None = None, n: int | None = None, parallel_tool_calls: bool | None = None, presence_penalty: float | None = None, response_format: OpenAIResponseFormatParam | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, tool_choice: str | dict[str, Any] | None = None, tools: list[dict[str, Any]] | None = None, top_logprobs: int | None = None, top_p: float | None = None, user: str | None = None, ) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]: model_obj = await self._get_model(model) params = await prepare_openai_completion_params( model=model_obj.provider_resource_id, messages=messages, frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, n=n, parallel_tool_calls=parallel_tool_calls, presence_penalty=presence_penalty, response_format=response_format, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, ) response = await self.openai_client.chat.completions.create(**params) return await self._adjust_ollama_chat_completion_response_ids(response) async def _adjust_ollama_chat_completion_response_ids( self, response: OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk], ) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]: id = f"chatcmpl-{uuid.uuid4()}" if isinstance(response, AsyncIterator): async def stream_with_chunk_ids() -> AsyncIterator[OpenAIChatCompletionChunk]: async for chunk in response: chunk.id = id yield chunk return stream_with_chunk_ids() else: response.id = id return response async def batch_completion( self, model_id: str, content_batch: list[InterleavedContent], sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, logprobs: LogProbConfig | None = None, ): raise NotImplementedError("Batch completion is not supported for Ollama") async def batch_chat_completion( self, model_id: str, messages_batch: list[list[Message]], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_config: ToolConfig | None = None, response_format: ResponseFormat | None = None, logprobs: LogProbConfig | None = None, ): raise NotImplementedError("Batch chat completion is not supported for Ollama") async def convert_message_to_openai_dict_for_ollama(message: Message) -> list[dict]: async def _convert_content(content) -> dict: if isinstance(content, ImageContentItem): return { "role": message.role, "images": [await convert_image_content_to_url(content, download=True, include_format=False)], } else: text = content.text if isinstance(content, TextContentItem) else content assert isinstance(text, str) return { "role": message.role, "content": text, } if isinstance(message.content, list): return [await _convert_content(c) for c in message.content] else: return [await _convert_content(message.content)]