# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator, AsyncIterator from typing import Any from openai import AsyncOpenAI from together import AsyncTogether from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, OpenAIEmbeddingsResponse, ResponseFormat, ResponseFormatType, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.inference.inference import ( OpenAIChatCompletion, OpenAIChatCompletionChunk, OpenAICompletion, OpenAIMessageParam, OpenAIResponseFormatParam, ) from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( convert_message_to_openai_dict, get_sampling_options, prepare_openai_completion_params, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, content_has_media, interleaved_content_as_str, request_has_media, ) from .config import TogetherImplConfig from .models import MODEL_ENTRIES logger = get_logger(name=__name__, category="inference") class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData): def __init__(self, config: TogetherImplConfig) -> None: ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self.config = config self._client = None self._openai_client = None async def initialize(self) -> None: pass async def shutdown(self) -> None: if self._client: # Together client has no close method, so just set to None self._client = None if self._openai_client: await self._openai_client.close() self._openai_client = None async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) def _get_client(self) -> AsyncTogether: if not self._client: together_api_key = None config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None if config_api_key: together_api_key = config_api_key else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.together_api_key: raise ValueError( 'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": }' ) together_api_key = provider_data.together_api_key self._client = AsyncTogether(api_key=together_api_key) return self._client def _get_openai_client(self) -> AsyncOpenAI: if not self._openai_client: together_client = self._get_client().client self._openai_client = AsyncOpenAI( base_url=together_client.base_url, api_key=together_client.api_key, ) return self._openai_client async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) client = self._get_client() r = await client.completions.create(**params) return process_completion_response(r) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) client = self._get_client() stream = await client.completions.create(**params) async for chunk in process_completion_stream_response(stream): yield chunk def _build_options( self, sampling_params: SamplingParams | None, logprobs: LogProbConfig | None, fmt: ResponseFormat, ) -> dict: options = get_sampling_options(sampling_params) if fmt: if fmt.type == ResponseFormatType.json_schema.value: options["response_format"] = { "type": "json_object", "schema": fmt.json_schema, } elif fmt.type == ResponseFormatType.grammar.value: raise NotImplementedError("Grammar response format not supported yet") else: raise ValueError(f"Unknown response format {fmt.type}") if logprobs and logprobs.top_k: if logprobs.top_k != 1: raise ValueError( f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided", ) options["logprobs"] = 1 return options async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], response_format=response_format, stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) client = self._get_client() if "messages" in params: r = await client.chat.completions.create(**params) else: r = await client.completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: params = await self._get_params(request) client = self._get_client() if "messages" in params: stream = await client.chat.completions.create(**params) else: stream = await client.completions.create(**params) async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict: input_dict = {} media_present = request_has_media(request) llama_model = self.get_llama_model(request.model) if isinstance(request, ChatCompletionRequest): if media_present or not llama_model: input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages] else: input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model) else: assert not media_present, "Together does not support media for Completion requests" input_dict["prompt"] = await completion_request_to_prompt(request) params = { "model": request.model, **input_dict, "stream": request.stream, **self._build_options(request.sampling_params, request.logprobs, request.response_format), } logger.debug(f"params to together: {params}") return params async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: model = await self.model_store.get_model(model_id) assert all(not content_has_media(content) for content in contents), ( "Together does not support media for embeddings" ) client = self._get_client() r = await client.embeddings.create( model=model.provider_resource_id, input=[interleaved_content_as_str(content) for content in contents], ) embeddings = [item.embedding for item in r.data] return EmbeddingsResponse(embeddings=embeddings) async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: raise NotImplementedError() async def openai_completion( self, model: str, prompt: str | list[str] | list[int] | list[list[int]], best_of: int | None = None, echo: bool | None = None, frequency_penalty: float | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_tokens: int | None = None, n: int | None = None, presence_penalty: float | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, top_p: float | None = None, user: str | None = None, guided_choice: list[str] | None = None, prompt_logprobs: int | None = None, suffix: str | None = None, ) -> OpenAICompletion: model_obj = await self.model_store.get_model(model) params = await prepare_openai_completion_params( model=model_obj.provider_resource_id, prompt=prompt, best_of=best_of, echo=echo, frequency_penalty=frequency_penalty, logit_bias=logit_bias, logprobs=logprobs, max_tokens=max_tokens, n=n, presence_penalty=presence_penalty, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, top_p=top_p, user=user, ) return await self._get_openai_client().completions.create(**params) # type: ignore async def openai_chat_completion( self, model: str, messages: list[OpenAIMessageParam], frequency_penalty: float | None = None, function_call: str | dict[str, Any] | None = None, functions: list[dict[str, Any]] | None = None, logit_bias: dict[str, float] | None = None, logprobs: bool | None = None, max_completion_tokens: int | None = None, max_tokens: int | None = None, n: int | None = None, parallel_tool_calls: bool | None = None, presence_penalty: float | None = None, response_format: OpenAIResponseFormatParam | None = None, seed: int | None = None, stop: str | list[str] | None = None, stream: bool | None = None, stream_options: dict[str, Any] | None = None, temperature: float | None = None, tool_choice: str | dict[str, Any] | None = None, tools: list[dict[str, Any]] | None = None, top_logprobs: int | None = None, top_p: float | None = None, user: str | None = None, ) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]: model_obj = await self.model_store.get_model(model) params = await prepare_openai_completion_params( model=model_obj.provider_resource_id, messages=messages, frequency_penalty=frequency_penalty, function_call=function_call, functions=functions, logit_bias=logit_bias, logprobs=logprobs, max_completion_tokens=max_completion_tokens, max_tokens=max_tokens, n=n, parallel_tool_calls=parallel_tool_calls, presence_penalty=presence_penalty, response_format=response_format, seed=seed, stop=stop, stream=stream, stream_options=stream_options, temperature=temperature, tool_choice=tool_choice, tools=tools, top_logprobs=top_logprobs, top_p=top_p, user=user, ) if params.get("stream", False): return self._stream_openai_chat_completion(params) return await self._get_openai_client().chat.completions.create(**params) # type: ignore async def _stream_openai_chat_completion(self, params: dict) -> AsyncGenerator: # together.ai sometimes adds usage data to the stream, even if include_usage is False # This causes an unexpected final chunk with empty choices array to be sent # to clients that may not handle it gracefully. include_usage = False if params.get("stream_options", None): include_usage = params["stream_options"].get("include_usage", False) stream = await self._get_openai_client().chat.completions.create(**params) seen_finish_reason = False async for chunk in stream: # Final usage chunk with no choices that the user didn't request, so discard if not include_usage and seen_finish_reason and len(chunk.choices) == 0: break yield chunk for choice in chunk.choices: if choice.finish_reason: seen_finish_reason = True break