# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import pytest from openai import OpenAI from llama_stack.distribution.library_client import LlamaStackAsLibraryClient from ..test_cases.test_case import TestCase def provider_from_model(client_with_models, model_id): models = {m.identifier: m for m in client_with_models.models.list()} models.update({m.provider_resource_id: m for m in client_with_models.models.list()}) provider_id = models[model_id].provider_id providers = {p.provider_id: p for p in client_with_models.providers.list()} return providers[provider_id] def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id): provider = provider_from_model(client_with_models, model_id) if provider.provider_type in ( "inline::meta-reference", "inline::sentence-transformers", "inline::vllm", "remote::bedrock", "remote::cerebras", "remote::databricks", # Technically Nvidia does support OpenAI completions, but none of their hosted models # support both completions and chat completions endpoint and all the Llama models are # just chat completions "remote::nvidia", "remote::runpod", "remote::sambanova", "remote::tgi", ): pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.") def skip_if_model_doesnt_support_suffix(client_with_models, model_id): # To test `fim` ( fill in the middle ) completion, we need to use a model that supports suffix. # Use this to specifically test this API functionality. # pytest -sv --stack-config="inference=ollama" \ # tests/integration/inference/test_openai_completion.py \ # --text-model qwen2.5-coder:1.5b \ # -k test_openai_completion_non_streaming_suffix if model_id != "qwen2.5-coder:1.5b": pytest.skip(f"Suffix is not supported for the model: {model_id}.") provider = provider_from_model(client_with_models, model_id) if provider.provider_type != "remote::ollama": pytest.skip(f"Provider {provider.provider_type} doesn't support suffix.") def skip_if_model_doesnt_support_openai_chat_completion(client_with_models, model_id): if isinstance(client_with_models, LlamaStackAsLibraryClient): pytest.skip("OpenAI chat completions are not supported when testing with library client yet.") provider = provider_from_model(client_with_models, model_id) if provider.provider_type in ( "inline::meta-reference", "inline::sentence-transformers", "inline::vllm", "remote::bedrock", "remote::cerebras", "remote::databricks", "remote::runpod", "remote::sambanova", "remote::tgi", ): pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI chat completions.") def skip_if_provider_isnt_vllm(client_with_models, model_id): provider = provider_from_model(client_with_models, model_id) if provider.provider_type != "remote::vllm": pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support vllm extra_body parameters.") @pytest.fixture def openai_client(client_with_models): base_url = f"{client_with_models.base_url}/v1/openai/v1" return OpenAI(base_url=base_url, api_key="bar") @pytest.fixture(params=["openai_client", "llama_stack_client"]) def compat_client(request): return request.getfixturevalue(request.param) @pytest.mark.parametrize( "test_case", [ "inference:completion:sanity", ], ) def test_openai_completion_non_streaming(llama_stack_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) tc = TestCase(test_case) # ollama needs more verbose prompting for some reason here... prompt = "Respond to this question and explain your answer. " + tc["content"] response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=False, ) assert len(response.choices) > 0 choice = response.choices[0] assert len(choice.text) > 10 @pytest.mark.parametrize( "test_case", [ "inference:completion:suffix", ], ) def test_openai_completion_non_streaming_suffix(llama_stack_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) skip_if_model_doesnt_support_suffix(client_with_models, text_model_id) tc = TestCase(test_case) # ollama needs more verbose prompting for some reason here... response = llama_stack_client.completions.create( model=text_model_id, prompt=tc["content"], stream=False, suffix=tc["suffix"], max_tokens=10, ) assert len(response.choices) > 0 choice = response.choices[0] assert len(choice.text) > 5 assert "france" in choice.text.lower() @pytest.mark.parametrize( "test_case", [ "inference:completion:sanity", ], ) def test_openai_completion_streaming(llama_stack_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) tc = TestCase(test_case) # ollama needs more verbose prompting for some reason here... prompt = "Respond to this question and explain your answer. " + tc["content"] response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=True, max_tokens=50, ) streamed_content = [chunk.choices[0].text or "" for chunk in response] content_str = "".join(streamed_content).lower().strip() assert len(content_str) > 10 @pytest.mark.parametrize( "prompt_logprobs", [ 1, 0, ], ) def test_openai_completion_prompt_logprobs(llama_stack_client, client_with_models, text_model_id, prompt_logprobs): skip_if_provider_isnt_vllm(client_with_models, text_model_id) prompt = "Hello, world!" response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=False, extra_body={ "prompt_logprobs": prompt_logprobs, }, ) assert len(response.choices) > 0 choice = response.choices[0] assert len(choice.prompt_logprobs) > 0 def test_openai_completion_guided_choice(llama_stack_client, client_with_models, text_model_id): skip_if_provider_isnt_vllm(client_with_models, text_model_id) prompt = "I am feeling really sad today." response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=False, extra_body={ "guided_choice": ["joy", "sadness"], }, ) assert len(response.choices) > 0 choice = response.choices[0] assert choice.text in ["joy", "sadness"] # Run the chat-completion tests with both the OpenAI client and the LlamaStack client @pytest.mark.parametrize( "test_case", [ "inference:chat_completion:non_streaming_01", "inference:chat_completion:non_streaming_02", ], ) def test_openai_chat_completion_non_streaming(compat_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) tc = TestCase(test_case) question = tc["question"] expected = tc["expected"] response = compat_client.chat.completions.create( model=text_model_id, messages=[ { "role": "user", "content": question, } ], stream=False, ) message_content = response.choices[0].message.content.lower().strip() assert len(message_content) > 0 assert expected.lower() in message_content @pytest.mark.parametrize( "test_case", [ "inference:chat_completion:streaming_01", "inference:chat_completion:streaming_02", ], ) def test_openai_chat_completion_streaming(compat_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) tc = TestCase(test_case) question = tc["question"] expected = tc["expected"] response = compat_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": question}], stream=True, timeout=120, # Increase timeout to 2 minutes for large conversation history ) streamed_content = [] for chunk in response: if chunk.choices[0].delta.content: streamed_content.append(chunk.choices[0].delta.content.lower().strip()) assert len(streamed_content) > 0 assert expected.lower() in "".join(streamed_content) @pytest.mark.parametrize( "test_case", [ "inference:chat_completion:streaming_01", "inference:chat_completion:streaming_02", ], ) def test_openai_chat_completion_streaming_with_n(compat_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) provider = provider_from_model(client_with_models, text_model_id) if provider.provider_type == "remote::ollama": pytest.skip(f"Model {text_model_id} hosted by {provider.provider_type} doesn't support n > 1.") tc = TestCase(test_case) question = tc["question"] expected = tc["expected"] response = compat_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": question}], stream=True, timeout=120, # Increase timeout to 2 minutes for large conversation history, n=2, ) streamed_content = {} for chunk in response: for choice in chunk.choices: if choice.delta.content: streamed_content[choice.index] = ( streamed_content.get(choice.index, "") + choice.delta.content.lower().strip() ) assert len(streamed_content) == 2 for i, content in streamed_content.items(): assert expected.lower() in content, f"Choice {i}: Expected {expected.lower()} in {content}" @pytest.mark.parametrize( "stream", [ True, False, ], ) def test_inference_store(compat_client, client_with_models, text_model_id, stream): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) client = compat_client # make a chat completion message = "Hello, world!" response = client.chat.completions.create( model=text_model_id, messages=[ { "role": "user", "content": message, } ], stream=stream, ) if stream: # accumulate the streamed content content = "" response_id = None for chunk in response: if response_id is None: response_id = chunk.id if chunk.choices[0].delta.content: content += chunk.choices[0].delta.content else: response_id = response.id content = response.choices[0].message.content responses = client.chat.completions.list() assert response_id in [r.id for r in responses.data] retrieved_response = client.chat.completions.retrieve(response_id) assert retrieved_response.id == response_id assert retrieved_response.choices[0].message.content == content, retrieved_response input_content = ( getattr(retrieved_response.input_messages[0], "content", None) or retrieved_response.input_messages[0]["content"] ) assert input_content == message, retrieved_response @pytest.mark.parametrize( "stream", [ True, False, ], ) def test_inference_store_tool_calls(compat_client, client_with_models, text_model_id, stream): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) client = compat_client # make a chat completion message = "What's the weather in Tokyo? Use the get_weather function to get the weather." response = client.chat.completions.create( model=text_model_id, messages=[ { "role": "user", "content": message, } ], stream=stream, tools=[ { "type": "function", "function": { "name": "get_weather", "description": "Get the weather in a given city", "parameters": { "type": "object", "properties": { "city": {"type": "string", "description": "The city to get the weather for"}, }, }, }, } ], ) if stream: # accumulate the streamed content content = "" response_id = None for chunk in response: if response_id is None: response_id = chunk.id if delta := chunk.choices[0].delta: if delta.content: content += delta.content else: response_id = response.id content = response.choices[0].message.content responses = client.chat.completions.list() assert response_id in [r.id for r in responses.data] retrieved_response = client.chat.completions.retrieve(response_id) assert retrieved_response.id == response_id input_content = ( getattr(retrieved_response.input_messages[0], "content", None) or retrieved_response.input_messages[0]["content"] ) assert input_content == message, retrieved_response tool_calls = retrieved_response.choices[0].message.tool_calls # sometimes model doesn't output tool calls, but we still want to test that the tool was called if tool_calls: # because we test with small models, just check that we retrieved # a tool call with a name and arguments string, but ignore contents assert len(tool_calls) == 1 assert tool_calls[0].function.name assert tool_calls[0].function.arguments else: # failed tool call parses show up as a message with content, so ensure # that the retrieve response content matches the original request assert retrieved_response.choices[0].message.content == content