# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.datatypes import Message from llama_models.llama3.api.tokenizer import Tokenizer from openai import OpenAI from llama_stack.apis.inference import * # noqa: F403 from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, ) from .config import VLLMImplConfig VLLM_SUPPORTED_MODELS = { "Llama3.1-8B": "meta-llama/Llama-3.1-8B", "Llama3.1-70B": "meta-llama/Llama-3.1-70B", "Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B", "Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8", "Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B", "Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct", "Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct", "Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct", "Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8", "Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct", "Llama3.2-1B": "meta-llama/Llama-3.2-1B", "Llama3.2-3B": "meta-llama/Llama-3.2-3B", "Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision", "Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision", "Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct", "Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct", "Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct", "Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct", "Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision", "Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4", "Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B", "Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B", "Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8", "Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M", "Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B", } class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): def __init__(self, config: VLLMImplConfig) -> None: self.config = config self.formatter = ChatFormat(Tokenizer.get_instance()) self.client = None async def initialize(self) -> None: self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) async def register_model(self, model: ModelDef) -> None: raise ValueError("Model registration is not supported for vLLM models") async def shutdown(self) -> None: pass async def list_models(self) -> List[ModelDef]: return [ ModelDef(identifier=model.id, llama_model=model.id) for model in self.client.models.list() ] def completion( self, model: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> Union[CompletionResponse, CompletionResponseStreamChunk]: raise NotImplementedError() def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request, self.client) else: return self._nonstream_chat_completion(request, self.client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = self._get_params(request) r = client.completions.create(**params) return process_chat_completion_response(request, r, self.formatter) async def _stream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> AsyncGenerator: params = self._get_params(request) # TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async # generator so this wrapper is not necessary? async def _to_async_generator(): s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response( request, stream, self.formatter ): yield chunk def _get_params(self, request: ChatCompletionRequest) -> dict: return { "model": VLLM_SUPPORTED_MODELS[request.model], "prompt": chat_completion_request_to_prompt(request, self.formatter), "stream": request.stream, **get_sampling_options(request), } async def embeddings( self, model: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: raise NotImplementedError()