# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import asyncio from unittest.mock import AsyncMock, MagicMock, patch import numpy as np import pytest import pytest_asyncio from llama_stack.apis.inference import EmbeddingsResponse, Inference from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig from llama_stack.providers.inline.vector_io.faiss.faiss import ( FaissIndex, FaissVectorIOAdapter, ) # This test is a unit test for the FaissVectorIOAdapter class. This should only contain # tests which are specific to this class. More general (API-level) tests should be placed in # tests/integration/vector_io/ # # How to run this test: # # pytest tests/unit/providers/vector_io/test_faiss.py \ # -v -s --tb=short --disable-warnings --asyncio-mode=auto FAISS_PROVIDER = "faiss" @pytest.fixture(scope="session") def loop(): return asyncio.new_event_loop() @pytest.fixture def embedding_dimension(): return 384 @pytest.fixture def vector_db_id(): return "test_vector_db" @pytest.fixture def sample_chunks(): return [ Chunk(content="MOCK text content 1", mime_type="text/plain", metadata={"document_id": "mock-doc-1"}), Chunk(content="MOCK text content 1", mime_type="text/plain", metadata={"document_id": "mock-doc-2"}), ] @pytest.fixture def sample_embeddings(embedding_dimension): return np.random.rand(2, embedding_dimension).astype(np.float32) @pytest.fixture def mock_vector_db(vector_db_id, embedding_dimension) -> MagicMock: mock_vector_db = MagicMock(spec=VectorDB) mock_vector_db.embedding_model = "mock_embedding_model" mock_vector_db.identifier = vector_db_id mock_vector_db.embedding_dimension = embedding_dimension return mock_vector_db @pytest.fixture def mock_inference_api(sample_embeddings): mock_api = MagicMock(spec=Inference) mock_api.embeddings = AsyncMock(return_value=EmbeddingsResponse(embeddings=sample_embeddings)) return mock_api @pytest.fixture def faiss_config(): config = MagicMock(spec=FaissVectorIOConfig) config.kvstore = None return config @pytest_asyncio.fixture async def faiss_index(embedding_dimension): index = await FaissIndex.create(dimension=embedding_dimension) yield index @pytest_asyncio.fixture async def faiss_adapter(faiss_config, mock_inference_api) -> FaissVectorIOAdapter: adapter = FaissVectorIOAdapter(config=faiss_config, inference_api=mock_inference_api) await adapter.initialize() yield adapter await adapter.shutdown() @pytest.mark.asyncio async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_identical( faiss_index, sample_chunks, sample_embeddings, embedding_dimension ): await faiss_index.add_chunks(sample_chunks, sample_embeddings) query_embedding = np.random.rand(embedding_dimension).astype(np.float32) with patch.object(faiss_index.index, "search") as mock_search: mock_search.return_value = (np.array([[0.0, 0.1]]), np.array([[0, 1]])) response = await faiss_index.query_vector(embedding=query_embedding, k=2, score_threshold=0.0) assert isinstance(response, QueryChunksResponse) assert len(response.chunks) == 2 assert len(response.scores) == 2 assert response.scores[0] == float("inf") # infinity (1.0 / 0.0) assert response.scores[1] == 10.0 # (1.0 / 0.1 = 10.0) assert response.chunks[0] == sample_chunks[0] assert response.chunks[1] == sample_chunks[1]