# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import Iterable from typing import TYPE_CHECKING, Any from databricks.sdk import WorkspaceClient from llama_stack.apis.inference import OpenAICompletion if TYPE_CHECKING: from llama_stack.apis.inference import OpenAICompletionRequestParams from llama_stack.log import get_logger from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin from .config import DatabricksImplConfig logger = get_logger(name=__name__, category="inference::databricks") class DatabricksInferenceAdapter(OpenAIMixin): config: DatabricksImplConfig # source: https://docs.databricks.com/aws/en/machine-learning/foundation-model-apis/supported-models embedding_model_metadata: dict[str, dict[str, int]] = { "databricks-gte-large-en": {"embedding_dimension": 1024, "context_length": 8192}, "databricks-bge-large-en": {"embedding_dimension": 1024, "context_length": 512}, } def get_api_key(self) -> str: return self.config.api_token.get_secret_value() def get_base_url(self) -> str: return f"{self.config.url}/serving-endpoints" async def list_provider_model_ids(self) -> Iterable[str]: return [ endpoint.name for endpoint in WorkspaceClient( host=self.config.url, token=self.get_api_key() ).serving_endpoints.list() # TODO: this is not async ] async def openai_completion( self, params: "OpenAICompletionRequestParams", ) -> OpenAICompletion: raise NotImplementedError()