--- orphan: true --- # Ollama Distribution ```{toctree} :maxdepth: 2 :hidden: self ``` The `llamastack/distribution-ollama` distribution consists of the following provider configurations. | API | Provider(s) | |-----|-------------| | agents | `inline::meta-reference` | | datasetio | `remote::huggingface`, `inline::localfs` | | eval | `inline::meta-reference` | | inference | `remote::ollama` | | safety | `inline::llama-guard` | | scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` | | telemetry | `inline::meta-reference` | | tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` | | vector_io | `inline::sqlite-vec`, `remote::chromadb`, `remote::pgvector` | You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration. ### Environment Variables The following environment variables can be configured: - `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`) - `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`) - `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`) - `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`) ## Setting up Ollama server Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server. In order to load models, you can run: ```bash export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" # ollama names this model differently, and we must use the ollama name when loading the model export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16" ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m ``` If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model. ```bash export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B" # ollama names this model differently, and we must use the ollama name when loading the model export OLLAMA_SAFETY_MODEL="llama-guard3:1b" ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m ``` ## Running Llama Stack Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash export LLAMA_STACK_PORT=5001 docker run \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ llamastack/distribution-ollama \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env OLLAMA_URL=http://host.docker.internal:11434 ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash # You need a local checkout of llama-stack to run this, get it using # git clone https://github.com/meta-llama/llama-stack.git cd /path/to/llama-stack docker run \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ -v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \ llamastack/distribution-ollama \ --yaml-config /root/my-run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env OLLAMA_URL=http://host.docker.internal:11434 ``` ### Via Conda Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. ```bash export LLAMA_STACK_PORT=5001 llama stack build --template ollama --image-type conda llama stack run ./run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env OLLAMA_URL=http://localhost:11434 ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash llama stack run ./run-with-safety.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env OLLAMA_URL=http://localhost:11434 ``` ### (Optional) Update Model Serving Configuration ```{note} Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models. ``` To serve a new model with `ollama` ```bash ollama run ``` To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama. ``` $ ollama ps NAME ID SIZE PROCESSOR UNTIL llama3.2:3b-instruct-fp16 195a8c01d91e 8.6 GB 100% GPU 9 minutes from now ``` To verify that the model served by ollama is correctly connected to Llama Stack server ```bash $ llama-stack-client models list Available Models ┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━┓ ┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃ ┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━┩ │ llm │ meta-llama/Llama-3.2-3B-Instruct │ llama3.2:3b-instruct-fp16 │ │ ollama │ └──────────────┴──────────────────────────────────────┴──────────────────────────────┴───────────┴─────────────┘ Total models: 1 ```