#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import os import uuid from termcolor import cprint # Set environment variables os.environ["INFERENCE_MODEL"] = "llama3.2:3b-instruct-fp16" os.environ["LLAMA_STACK_CONFIG"] = "ollama" # Import libraries after setting environment variables from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types import Document from llama_stack_client.types.agent_create_params import AgentConfig from llama_stack.distribution.library_client import LlamaStackAsLibraryClient def main(): # Initialize the client client = LlamaStackAsLibraryClient("ollama") vector_db_id = f"test-vector-db-{uuid.uuid4().hex}" _ = client.initialize() model_id = "llama3.2:3b-instruct-fp16" # Define the list of document URLs and create Document objects urls = [ "chat.rst", "llama3.rst", "memory_optimizations.rst", "lora_finetune.rst", ] documents = [ Document( document_id=f"num-{i}", content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", mime_type="text/plain", metadata={}, ) for i, url in enumerate(urls) ] # (Optional) Use the documents as needed with your client here client.vector_dbs.register( provider_id="sqlite_vec", vector_db_id=vector_db_id, embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, ) client.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=vector_db_id, chunk_size_in_tokens=512, ) # Create agent configuration agent_config = AgentConfig( model=model_id, instructions="You are a helpful assistant", enable_session_persistence=False, toolgroups=[ { "name": "builtin::rag", "args": { "vector_db_ids": [vector_db_id], }, } ], ) # Instantiate the Agent agent = Agent(client, agent_config) # List of user prompts user_prompts = [ "What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.", "Was anything related to 'Llama3' discussed, if so what?", "Tell me how to use LoRA", "What about Quantization?", ] # Create a session for the agent session_id = agent.create_session("test-session") # Process each prompt and display the output for prompt in user_prompts: cprint(f"User> {prompt}", "green") response = agent.create_turn( messages=[ { "role": "user", "content": prompt, } ], session_id=session_id, ) # Log and print events from the response for log in EventLogger().log(response): log.print() if __name__ == "__main__": main()