# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement. import json import logging import math import os import sys import time from pathlib import Path from typing import Generator, List, Optional, Tuple, Union import torch import torch.nn.functional as F from fairscale.nn.model_parallel.initialize import ( get_model_parallel_rank, initialize_model_parallel, model_parallel_is_initialized, ) from llama_models.llama3.api.args import ModelArgs from llama_models.llama3.api.chat_format import ChatFormat, LLMInput from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.llama3.reference_impl.model import Transformer from llama_models.llama3.reference_impl.multimodal.model import ( CrossAttentionTransformer, ) from llama_models.sku_list import resolve_model from pydantic import BaseModel from llama_stack.apis.inference import * # noqa: F403 from lmformatenforcer import JsonSchemaParser, TokenEnforcer, TokenEnforcerTokenizerData from llama_stack.distribution.utils.model_utils import model_local_dir from llama_stack.providers.utils.inference.prompt_adapter import ( ChatCompletionRequestWithRawContent, CompletionRequestWithRawContent, ) from .config import ( Fp8QuantizationConfig, Int4QuantizationConfig, MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig, ) log = logging.getLogger(__name__) def model_checkpoint_dir(model) -> str: checkpoint_dir = Path(model_local_dir(model.descriptor())) paths = [Path(checkpoint_dir / f"consolidated.{ext}") for ext in ["pth", "00.pth"]] if not any(p.exists() for p in paths): checkpoint_dir = checkpoint_dir / "original" assert checkpoint_dir.exists(), ( f"Could not find checkpoints in: {model_local_dir(model.descriptor())}. " f"Please download model using `llama download --model-id {model.descriptor()}`" ) return str(checkpoint_dir) class TokenResult(BaseModel): token: int text: str logprobs: Optional[List[float]] = None class Llama: @staticmethod def build( config: Union[ MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig ], ): """ Build a Llama instance by initializing and loading a model checkpoint. Note: This method initializes the distributed process group, sets the device to CUDA, and loads the pre-trained model and tokenizer. """ model = resolve_model(config.model) llama_model = model.core_model_id.value if not torch.distributed.is_initialized(): torch.distributed.init_process_group("nccl") model_parallel_size = config.model_parallel_size if not model_parallel_is_initialized(): initialize_model_parallel(model_parallel_size) local_rank = int(os.environ.get("LOCAL_RANK", 0)) torch.cuda.set_device(local_rank) # seed must be the same in all processes if config.torch_seed is not None: torch.manual_seed(config.torch_seed) if local_rank > 0: sys.stdout = open(os.devnull, "w") start_time = time.time() if config.checkpoint_dir and config.checkpoint_dir != "null": ckpt_dir = config.checkpoint_dir else: ckpt_dir = model_checkpoint_dir(model) checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" assert model_parallel_size == len( checkpoints ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" ckpt_path = checkpoints[get_model_parallel_rank()] state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True) with open(Path(ckpt_dir) / "params.json", "r") as f: params = json.loads(f.read()) if "model" in params: params = params["model"] model_args: ModelArgs = ModelArgs( max_seq_len=config.max_seq_len, max_batch_size=config.max_batch_size, **params, ) tokenizer = Tokenizer.get_instance() assert ( model_args.vocab_size == tokenizer.n_words ), f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}" if isinstance(config, MetaReferenceQuantizedInferenceConfig): if isinstance(config.quantization, Fp8QuantizationConfig): from .quantization.loader import convert_to_fp8_quantized_model # load on CPU in bf16 so that fp8 conversion does not find an # unexpected (fp32, e.g.) datatype torch.set_default_tensor_type(torch.BFloat16Tensor) if model_args.vision_chunk_size > 0: model = CrossAttentionTransformer(model_args) model.setup_cache(model_args.max_batch_size, torch.bfloat16) else: model = Transformer(model_args) model.load_state_dict(state_dict, strict=False) model = convert_to_fp8_quantized_model(model, config, ckpt_dir) elif isinstance(config.quantization, Int4QuantizationConfig): from .quantization.loader import convert_to_int4_quantized_model model = Transformer(model_args) model = convert_to_int4_quantized_model(model, model_args, config) model.load_state_dict(state_dict, strict=True) if ( model_args.quantization_args is not None and model_args.quantization_args.spinquant ): # Add a wrapper for adding hadamard transform for spinquant. # This needs to be done after loading the state dict otherwise an error will be raised while # loading the state dict. from .quantization.hadamard_utils import ( add_hadamard_transform_for_spinquant, ) add_hadamard_transform_for_spinquant(model) else: raise NotImplementedError( "Currently int4 and fp8 are the only supported quantization methods." ) else: if torch.cuda.is_bf16_supported(): torch.set_default_tensor_type(torch.cuda.BFloat16Tensor) else: torch.set_default_tensor_type(torch.cuda.HalfTensor) if model_args.vision_chunk_size > 0: model = CrossAttentionTransformer(model_args) model.setup_cache(model_args.max_batch_size, torch.bfloat16) else: model = Transformer(model_args) model.load_state_dict(state_dict, strict=False) log.info(f"Loaded in {time.time() - start_time:.2f} seconds") return Llama(model, tokenizer, model_args, llama_model) def __init__( self, model: Transformer, tokenizer: Tokenizer, args: ModelArgs, llama_model: str, ): self.args = args self.model = model self.tokenizer = tokenizer self.formatter = ChatFormat(tokenizer) self.llama_model = llama_model @torch.inference_mode() def generate( self, model_input: LLMInput, max_gen_len: int, temperature: float = 0.6, top_p: float = 0.9, logprobs: bool = False, echo: bool = False, include_stop_token: bool = False, print_input_tokens: bool = False, logits_processor: Optional["LogitsProcessor"] = None, ) -> Generator: params = self.model.params if print_input_tokens: input_tokens = [ self.formatter.vision_token if t == 128256 else t for t in model_input.tokens ] log.info("Input to model -> " + self.tokenizer.decode(input_tokens)) prompt_tokens = [model_input.tokens] bsz = 1 assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) max_prompt_len = max(len(t) for t in prompt_tokens) if max_prompt_len >= params.max_seq_len: log.error(f"Out of token budget {max_prompt_len} vs {params.max_seq_len}") return total_len = min(max_gen_len + max_prompt_len, params.max_seq_len) is_vision = isinstance(self.model, CrossAttentionTransformer) if is_vision: images = model_input.vision.images if model_input.vision is not None else [] mask = model_input.vision.mask if model_input.vision is not None else [] # the method works for bsz > 1 so add a batch dimension xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = ( self.model.compute_vision_tokens_masks( batch_images=[images], batch_masks=[mask], total_len=total_len, ) ) pad_id = self.tokenizer.pad_id tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda") for k, t in enumerate(prompt_tokens): tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda") if logprobs: token_logprobs = torch.zeros_like(tokens, dtype=torch.float) prev_pos = 0 eos_reached = torch.tensor([False] * bsz, device="cuda") input_text_mask = tokens != pad_id if min_prompt_len == total_len: # TODO(ashwin): unify this branch with the one below and figure out multimodal crap logits = self.model.forward(tokens, prev_pos) token_logprobs = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens, reduction="none", ignore_index=pad_id, ) stop_tokens = torch.tensor(self.tokenizer.stop_tokens, device="cuda") for cur_pos in range(min_prompt_len, total_len): if is_vision: position_ids = torch.arange( prev_pos, cur_pos, dtype=torch.long, device="cuda" ) logits = self.model.forward( position_ids, tokens, cross_attention_masks, full_text_row_masked_out_mask, xattn_caches, ) else: logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if logits_processor is not None: logits = logits_processor.process_logits(tokens[:, :cur_pos], logits) if temperature > 0: probs = torch.softmax(logits[:, -1] / temperature, dim=-1) next_token = sample_top_p(probs, top_p) else: next_token = torch.argmax(logits[:, -1], dim=-1) next_token = next_token.reshape(-1) # only replace token if prompt has already been generated next_token = torch.where( input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token ) tokens[:, cur_pos] = next_token target = tokens[:, prev_pos + 1 : cur_pos + 1] if is_vision: # the logits space (num_classes) is designed to never contain a media_token # however our input token stream does contain them. we need to nuke them here # or else the CUDA kernels will crash with an illegal memory access vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256] masks = [target.eq(t) for t in vision_tokens] if len(masks) > 1: mask = torch.logical_or(*masks) else: mask = masks[0] target[mask] = 0 if logprobs: token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( input=logits.transpose(1, 2), target=tokens[:, prev_pos + 1 : cur_pos + 1], reduction="none", ignore_index=pad_id, ) eos_reached |= (~input_text_mask[:, cur_pos]) & ( torch.isin(next_token, stop_tokens) ) yield TokenResult( token=next_token[0].item(), text=self.tokenizer.decode(next_token.tolist()), logprobs=( token_logprobs[:, cur_pos : cur_pos + 1][0].tolist() if logprobs else None ), ) prev_pos = cur_pos if all(eos_reached): break def completion( self, request: CompletionRequestWithRawContent, ) -> Generator: sampling_params = request.sampling_params max_gen_len = sampling_params.max_tokens if ( max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len ): max_gen_len = self.model.params.max_seq_len - 1 model_input = self.formatter.encode_content(request.content) yield from self.generate( model_input=model_input, max_gen_len=max_gen_len, temperature=sampling_params.temperature, top_p=sampling_params.top_p, logprobs=bool(request.logprobs), include_stop_token=True, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, request.response_format, ), ) def chat_completion( self, request: ChatCompletionRequestWithRawContent, ) -> Generator: sampling_params = request.sampling_params max_gen_len = sampling_params.max_tokens if ( max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.model.params.max_seq_len ): max_gen_len = self.model.params.max_seq_len - 1 yield from self.generate( model_input=self.formatter.encode_dialog_prompt( request.messages, request.tool_prompt_format, ), max_gen_len=max_gen_len, temperature=sampling_params.temperature, top_p=sampling_params.top_p, logprobs=bool(request.logprobs), include_stop_token=True, logits_processor=get_logits_processor( self.tokenizer, self.args.vocab_size, request.response_format, ), ) def sample_top_p(probs, p): """ Perform top-p (nucleus) sampling on a probability distribution. Args: probs (torch.Tensor): Probability distribution tensor. p (float): Probability threshold for top-p sampling. Returns: torch.Tensor: Sampled token indices. Note: Top-p sampling selects the smallest set of tokens whose cumulative probability mass exceeds the threshold p. The distribution is renormalized based on the selected tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token class LogitsProcessor: def __init__(self, token_enforcer: TokenEnforcer): self.token_enforcer = token_enforcer self.mask: Optional[torch.Tensor] = None def process_logits( self, tokens: torch.Tensor, scores: torch.Tensor ) -> torch.Tensor: token_sequence = tokens[0, :].tolist() allowed_tokens = self.token_enforcer.get_allowed_tokens(token_sequence) if self.mask is not None: self.mask.fill_(-math.inf) else: self.mask = torch.full_like(scores, -math.inf) self.mask[:, :, allowed_tokens] = 0 scores = scores + self.mask return scores def get_logits_processor( tokenizer: Tokenizer, vocab_size: int, response_format: Optional[ResponseFormat], ) -> Optional["LogitsProcessor"]: if response_format is None: return None if response_format.type != ResponseFormatType.json_schema.value: raise ValueError(f"Unsupported response format type {response_format.type}") parser = JsonSchemaParser(response_format.json_schema) data = TokenEnforcerTokenizerData( _build_regular_tokens_list(tokenizer, vocab_size), tokenizer.decode, tokenizer.stop_tokens, ) token_enforcer = TokenEnforcer(data, parser) return LogitsProcessor(token_enforcer) def _build_regular_tokens_list( tokenizer: Tokenizer, vocab_size: int ) -> List[Tuple[int, str, bool]]: token_0 = tokenizer.encode("0", bos=False, eos=False)[-1] regular_tokens = [] special_token_ids = set(tokenizer.special_tokens.values()) for token_idx in range(vocab_size): if token_idx in special_token_ids: continue # We prepend token 0 and skip the first letter of the result to get a space if the token is a start word. decoded_after_0 = tokenizer.decode([token_0, token_idx])[1:] decoded_regular = tokenizer.decode([token_idx]) is_word_start_token = len(decoded_after_0) > len(decoded_regular) regular_tokens.append((token_idx, decoded_after_0, is_word_start_token)) return regular_tokens