{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Tool Calling\n", "\n", "Before you begin, please ensure Llama Stack is installed and set up by following the [Getting Started Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this section, we'll explore how to enhance your applications with tool calling capabilities. We'll cover:\n", "1. Setting up and using the Brave Search API\n", "2. Creating custom tools\n", "3. Configuring tool prompts and safety settings" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Set up your connection parameters:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "HOST = \"localhost\" # Replace with your host\n", "PORT = 5000 # Replace with your port" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import asyncio\n", "import os\n", "from typing import Dict, List, Optional\n", "from dotenv import load_dotenv\n", "\n", "from llama_stack_client import LlamaStackClient\n", "from llama_stack_client.lib.agents.agent import Agent\n", "from llama_stack_client.lib.agents.event_logger import EventLogger\n", "from llama_stack_client.types.agent_create_params import (\n", " AgentConfig,\n", " AgentConfigToolSearchToolDefinition,\n", ")\n", "\n", "# Load environment variables\n", "load_dotenv()\n", "\n", "# Helper function to create an agent with tools\n", "async def create_tool_agent(\n", " client: LlamaStackClient,\n", " tools: List[Dict],\n", " instructions: str = \"You are a helpful assistant\",\n", " model: str = \"Llama3.2-11B-Vision-Instruct\",\n", ") -> Agent:\n", " \"\"\"Create an agent with specified tools.\"\"\"\n", " print(\"Using the following model: \", model)\n", " agent_config = AgentConfig(\n", " model=model,\n", " instructions=instructions,\n", " sampling_params={\n", " \"strategy\": \"greedy\",\n", " \"temperature\": 1.0,\n", " \"top_p\": 0.9,\n", " },\n", " tools=tools,\n", " tool_choice=\"auto\",\n", " tool_prompt_format=\"json\",\n", " enable_session_persistence=True,\n", " )\n", "\n", " return Agent(client, agent_config)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, create a `.env` file in your notebook directory with your Brave Search API key:\n", "\n", "```\n", "BRAVE_SEARCH_API_KEY=your_key_here\n", "```\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using the following model: Llama3.2-11B-Vision-Instruct\n", "\n", "Query: What are the latest developments in quantum computing?\n", "--------------------------------------------------\n", "\u001b[30m\u001b[0m\u001b[33minference> \u001b[0m\u001b[33mF\u001b[0m\u001b[33mIND\u001b[0m\u001b[33mINGS\u001b[0m\u001b[33m:\n", "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m latest\u001b[0m\u001b[33m developments\u001b[0m\u001b[33m in\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m computing\u001b[0m\u001b[33m include\u001b[0m\u001b[33m the\u001b[0m\u001b[33m introduction\u001b[0m\u001b[33m of\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m processors\u001b[0m\u001b[33m with\u001b[0m\u001b[33m increasing\u001b[0m\u001b[33m numbers\u001b[0m\u001b[33m of\u001b[0m\u001b[33m q\u001b[0m\u001b[33mubits\u001b[0m\u001b[33m,\u001b[0m\u001b[33m advancements\u001b[0m\u001b[33m in\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m error\u001b[0m\u001b[33m correction\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m the\u001b[0m\u001b[33m development\u001b[0m\u001b[33m of\u001b[0m\u001b[33m new\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m algorithms\u001b[0m\u001b[33m.\u001b[0m\u001b[33m Companies\u001b[0m\u001b[33m such\u001b[0m\u001b[33m as\u001b[0m\u001b[33m IBM\u001b[0m\u001b[33m,\u001b[0m\u001b[33m Google\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m Microsoft\u001b[0m\u001b[33m are\u001b[0m\u001b[33m leading\u001b[0m\u001b[33m the\u001b[0m\u001b[33m charge\u001b[0m\u001b[33m in\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m computing\u001b[0m\u001b[33m research\u001b[0m\u001b[33m and\u001b[0m\u001b[33m development\u001b[0m\u001b[33m.\u001b[0m\u001b[33m For\u001b[0m\u001b[33m example\u001b[0m\u001b[33m,\u001b[0m\u001b[33m IBM\u001b[0m\u001b[33m's\u001b[0m\u001b[33m Quantum\u001b[0m\u001b[33m Experience\u001b[0m\u001b[33m cloud\u001b[0m\u001b[33m-based\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m computer\u001b[0m\u001b[33m has\u001b[0m\u001b[33m \u001b[0m\u001b[33m127\u001b[0m\u001b[33m q\u001b[0m\u001b[33mubits\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33mwww\u001b[0m\u001b[33m.ibm\u001b[0m\u001b[33m.com\u001b[0m\u001b[33m/\u001b[0m\u001b[33mquant\u001b[0m\u001b[33mum\u001b[0m\u001b[33m-com\u001b[0m\u001b[33mput\u001b[0m\u001b[33ming\u001b[0m\u001b[33m/\u001b[0m\u001b[33m),\u001b[0m\u001b[33m while\u001b[0m\u001b[33m Google\u001b[0m\u001b[33m's\u001b[0m\u001b[33m S\u001b[0m\u001b[33myc\u001b[0m\u001b[33mam\u001b[0m\u001b[33more\u001b[0m\u001b[33m processor\u001b[0m\u001b[33m has\u001b[0m\u001b[33m \u001b[0m\u001b[33m53\u001b[0m\u001b[33m q\u001b[0m\u001b[33mubits\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33ms\u001b[0m\u001b[33mcai\u001b[0m\u001b[33m.st\u001b[0m\u001b[33manford\u001b[0m\u001b[33m.edu\u001b[0m\u001b[33m/~\u001b[0m\u001b[33mmw\u001b[0m\u001b[33mj\u001b[0m\u001b[33m/s\u001b[0m\u001b[33myc\u001b[0m\u001b[33mam\u001b[0m\u001b[33more\u001b[0m\u001b[33m.html\u001b[0m\u001b[33m).\n", "\n", "\u001b[0m\u001b[33mQuant\u001b[0m\u001b[33mum\u001b[0m\u001b[33m error\u001b[0m\u001b[33m correction\u001b[0m\u001b[33m is\u001b[0m\u001b[33m also\u001b[0m\u001b[33m a\u001b[0m\u001b[33m major\u001b[0m\u001b[33m area\u001b[0m\u001b[33m of\u001b[0m\u001b[33m research\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m scientists\u001b[0m\u001b[33m exploring\u001b[0m\u001b[33m various\u001b[0m\u001b[33m methods\u001b[0m\u001b[33m to\u001b[0m\u001b[33m mitigate\u001b[0m\u001b[33m the\u001b[0m\u001b[33m effects\u001b[0m\u001b[33m of\u001b[0m\u001b[33m deco\u001b[0m\u001b[33mherence\u001b[0m\u001b[33m and\u001b[0m\u001b[33m errors\u001b[0m\u001b[33m in\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m computations\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33mar\u001b[0m\u001b[33mxiv\u001b[0m\u001b[33m.org\u001b[0m\u001b[33m/\u001b[0m\u001b[33mabs\u001b[0m\u001b[33m/\u001b[0m\u001b[33m210\u001b[0m\u001b[33m4\u001b[0m\u001b[33m.\u001b[0m\u001b[33m045\u001b[0m\u001b[33m93\u001b[0m\u001b[33m).\u001b[0m\u001b[33m New\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m algorithms\u001b[0m\u001b[33m,\u001b[0m\u001b[33m such\u001b[0m\u001b[33m as\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m simulation\u001b[0m\u001b[33m and\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m machine\u001b[0m\u001b[33m learning\u001b[0m\u001b[33m,\u001b[0m\u001b[33m are\u001b[0m\u001b[33m also\u001b[0m\u001b[33m being\u001b[0m\u001b[33m developed\u001b[0m\u001b[33m to\u001b[0m\u001b[33m take\u001b[0m\u001b[33m advantage\u001b[0m\u001b[33m of\u001b[0m\u001b[33m the\u001b[0m\u001b[33m unique\u001b[0m\u001b[33m properties\u001b[0m\u001b[33m of\u001b[0m\u001b[33m quantum\u001b[0m\u001b[33m computing\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33mar\u001b[0m\u001b[33mxiv\u001b[0m\u001b[33m.org\u001b[0m\u001b[33m/\u001b[0m\u001b[33mabs\u001b[0m\u001b[33m/\u001b[0m\u001b[33m210\u001b[0m\u001b[33m2\u001b[0m\u001b[33m.\u001b[0m\u001b[33m081\u001b[0m\u001b[33m83\u001b[0m\u001b[33m).\n", "\n", "\u001b[0m\u001b[33mS\u001b[0m\u001b[33mOURCES\u001b[0m\u001b[33m:\n", "\u001b[0m\u001b[33m-\u001b[0m\u001b[33m IBM\u001b[0m\u001b[33m Quantum\u001b[0m\u001b[33m Experience\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33mwww\u001b[0m\u001b[33m.ibm\u001b[0m\u001b[33m.com\u001b[0m\u001b[33m/\u001b[0m\u001b[33mquant\u001b[0m\u001b[33mum\u001b[0m\u001b[33m-com\u001b[0m\u001b[33mput\u001b[0m\u001b[33ming\u001b[0m\u001b[33m/)\n", "\u001b[0m\u001b[33m-\u001b[0m\u001b[33m Google\u001b[0m\u001b[33m's\u001b[0m\u001b[33m S\u001b[0m\u001b[33myc\u001b[0m\u001b[33mam\u001b[0m\u001b[33more\u001b[0m\u001b[33m processor\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33ms\u001b[0m\u001b[33mcai\u001b[0m\u001b[33m.st\u001b[0m\u001b[33manford\u001b[0m\u001b[33m.edu\u001b[0m\u001b[33m/~\u001b[0m\u001b[33mmw\u001b[0m\u001b[33mj\u001b[0m\u001b[33m/s\u001b[0m\u001b[33myc\u001b[0m\u001b[33mam\u001b[0m\u001b[33more\u001b[0m\u001b[33m.html\u001b[0m\u001b[33m)\n", "\u001b[0m\u001b[33m-\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mQuant\u001b[0m\u001b[33mum\u001b[0m\u001b[33m error\u001b[0m\u001b[33m correction\u001b[0m\u001b[33m with\u001b[0m\u001b[33m encoded\u001b[0m\u001b[33m cat\u001b[0m\u001b[33m codes\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33mar\u001b[0m\u001b[33mxiv\u001b[0m\u001b[33m.org\u001b[0m\u001b[33m/\u001b[0m\u001b[33mabs\u001b[0m\u001b[33m/\u001b[0m\u001b[33m210\u001b[0m\u001b[33m4\u001b[0m\u001b[33m.\u001b[0m\u001b[33m045\u001b[0m\u001b[33m93\u001b[0m\u001b[33m)\n", "\u001b[0m\u001b[33m-\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mQuant\u001b[0m\u001b[33mum\u001b[0m\u001b[33m simulation\u001b[0m\u001b[33m of\u001b[0m\u001b[33m many\u001b[0m\u001b[33m-body\u001b[0m\u001b[33m systems\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m (\u001b[0m\u001b[33mhttps\u001b[0m\u001b[33m://\u001b[0m\u001b[33mar\u001b[0m\u001b[33mxiv\u001b[0m\u001b[33m.org\u001b[0m\u001b[33m/\u001b[0m\u001b[33mabs\u001b[0m\u001b[33m/\u001b[0m\u001b[33m210\u001b[0m\u001b[33m2\u001b[0m\u001b[33m.\u001b[0m\u001b[33m081\u001b[0m\u001b[33m83\u001b[0m\u001b[33m)\u001b[0m\u001b[97m\u001b[0m\n", "\u001b[30m\u001b[0m" ] } ], "source": [ "async def create_search_agent(client: LlamaStackClient) -> Agent:\n", " \"\"\"Create an agent with Brave Search capability.\"\"\"\n", " search_tool = AgentConfigToolSearchToolDefinition(\n", " type=\"brave_search\",\n", " engine=\"brave\",\n", " api_key=\"dummy_value\"#os.getenv(\"BRAVE_SEARCH_API_KEY\"),\n", " )\n", "\n", " models_response = client.models.list()\n", " for model in models_response:\n", " if model.identifier.endswith(\"Instruct\"):\n", " model_name = model.llama_model\n", "\n", "\n", " return await create_tool_agent(\n", " client=client,\n", " tools=[search_tool],\n", " model = model_name,\n", " instructions=\"\"\"\n", " You are a research assistant that can search the web.\n", " Always cite your sources with URLs when providing information.\n", " Format your responses as:\n", "\n", " FINDINGS:\n", " [Your summary here]\n", "\n", " SOURCES:\n", " - [Source title](URL)\n", " \"\"\"\n", " )\n", "\n", "# Example usage\n", "async def search_example():\n", " client = LlamaStackClient(base_url=f\"http://{HOST}:{PORT}\")\n", " agent = await create_search_agent(client)\n", "\n", " # Create a session\n", " session_id = agent.create_session(\"search-session\")\n", "\n", " # Example queries\n", " queries = [\n", " \"What are the latest developments in quantum computing?\",\n", " #\"Who won the most recent Super Bowl?\",\n", " ]\n", "\n", " for query in queries:\n", " print(f\"\\nQuery: {query}\")\n", " print(\"-\" * 50)\n", "\n", " response = agent.create_turn(\n", " messages=[{\"role\": \"user\", \"content\": query}],\n", " session_id=session_id,\n", " )\n", "\n", " async for log in EventLogger().log(response):\n", " log.print()\n", "\n", "# Run the example (in Jupyter, use asyncio.run())\n", "await search_example()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3. Custom Tool Creation\n", "\n", "Let's create a custom weather tool:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Query: What's the weather like in San Francisco?\n", "--------------------------------------------------\n", "\u001b[30m\u001b[0m\u001b[33minference> \u001b[0m\u001b[33m{\n", "\u001b[0m\u001b[33m \u001b[0m\u001b[33m \"\u001b[0m\u001b[33mtype\u001b[0m\u001b[33m\":\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mfunction\u001b[0m\u001b[33m\",\n", "\u001b[0m\u001b[33m \u001b[0m\u001b[33m \"\u001b[0m\u001b[33mname\u001b[0m\u001b[33m\":\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mget\u001b[0m\u001b[33m_weather\u001b[0m\u001b[33m\",\n", "\u001b[0m\u001b[33m \u001b[0m\u001b[33m \"\u001b[0m\u001b[33mparameters\u001b[0m\u001b[33m\":\u001b[0m\u001b[33m {\n", "\u001b[0m\u001b[33m \u001b[0m\u001b[33m \"\u001b[0m\u001b[33mlocation\u001b[0m\u001b[33m\":\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mSan\u001b[0m\u001b[33m Francisco\u001b[0m\u001b[33m\"\n", "\u001b[0m\u001b[33m \u001b[0m\u001b[33m }\n", "\u001b[0m\u001b[33m}\u001b[0m\u001b[97m\u001b[0m\n", "\u001b[32mCustomTool> {\"temperature\": 72.5, \"conditions\": \"partly cloudy\", \"humidity\": 65.0}\u001b[0m\n", "\n", "Query: Tell me the weather in Tokyo tomorrow\n", "--------------------------------------------------\n", "\u001b[30m\u001b[0m\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36m{\"\u001b[0m\u001b[36mtype\u001b[0m\u001b[36m\":\u001b[0m\u001b[36m \"\u001b[0m\u001b[36mfunction\u001b[0m\u001b[36m\",\u001b[0m\u001b[36m \"\u001b[0m\u001b[36mname\u001b[0m\u001b[36m\":\u001b[0m\u001b[36m \"\u001b[0m\u001b[36mget\u001b[0m\u001b[36m_weather\u001b[0m\u001b[36m\",\u001b[0m\u001b[36m \"\u001b[0m\u001b[36mparameters\u001b[0m\u001b[36m\":\u001b[0m\u001b[36m {\"\u001b[0m\u001b[36mlocation\u001b[0m\u001b[36m\":\u001b[0m\u001b[36m \"\u001b[0m\u001b[36mTok\u001b[0m\u001b[36myo\u001b[0m\u001b[36m\",\u001b[0m\u001b[36m \"\u001b[0m\u001b[36mdate\u001b[0m\u001b[36m\":\u001b[0m\u001b[36m \"\u001b[0m\u001b[36mtom\u001b[0m\u001b[36morrow\u001b[0m\u001b[36m\"}}\u001b[0m\u001b[97m\u001b[0m\n", "\u001b[32mCustomTool> {\"temperature\": 90.1, \"conditions\": \"sunny\", \"humidity\": 40.0}\u001b[0m\n" ] } ], "source": [ "from typing import TypedDict, Optional, Dict, Any\n", "from datetime import datetime\n", "import json\n", "from llama_stack_client.types.tool_param_definition_param import ToolParamDefinitionParam\n", "from llama_stack_client.types import CompletionMessage,ToolResponseMessage\n", "from llama_stack_client.lib.agents.custom_tool import CustomTool\n", "\n", "class WeatherTool(CustomTool):\n", " \"\"\"Example custom tool for weather information.\"\"\"\n", "\n", " def get_name(self) -> str:\n", " return \"get_weather\"\n", "\n", " def get_description(self) -> str:\n", " return \"Get weather information for a location\"\n", "\n", " def get_params_definition(self) -> Dict[str, ToolParamDefinitionParam]:\n", " return {\n", " \"location\": ToolParamDefinitionParam(\n", " param_type=\"str\",\n", " description=\"City or location name\",\n", " required=True\n", " ),\n", " \"date\": ToolParamDefinitionParam(\n", " param_type=\"str\",\n", " description=\"Optional date (YYYY-MM-DD)\",\n", " required=False\n", " )\n", " }\n", " async def run(self, messages: List[CompletionMessage]) -> List[ToolResponseMessage]:\n", " assert len(messages) == 1, \"Expected single message\"\n", "\n", " message = messages[0]\n", "\n", " tool_call = message.tool_calls[0]\n", " # location = tool_call.arguments.get(\"location\", None)\n", " # date = tool_call.arguments.get(\"date\", None)\n", " try:\n", " response = await self.run_impl(**tool_call.arguments)\n", " response_str = json.dumps(response, ensure_ascii=False)\n", " except Exception as e:\n", " response_str = f\"Error when running tool: {e}\"\n", "\n", " message = ToolResponseMessage(\n", " call_id=tool_call.call_id,\n", " tool_name=tool_call.tool_name,\n", " content=response_str,\n", " role=\"ipython\",\n", " )\n", " return [message]\n", "\n", " async def run_impl(self, location: str, date: Optional[str] = None) -> Dict[str, Any]:\n", " \"\"\"Simulate getting weather data (replace with actual API call).\"\"\"\n", " # Mock implementation\n", " if date:\n", " return {\n", " \"temperature\": 90.1,\n", " \"conditions\": \"sunny\",\n", " \"humidity\": 40.0\n", " }\n", " return {\n", " \"temperature\": 72.5,\n", " \"conditions\": \"partly cloudy\",\n", " \"humidity\": 65.0\n", " }\n", "\n", "\n", "async def create_weather_agent(client: LlamaStackClient) -> Agent:\n", " \"\"\"Create an agent with weather tool capability.\"\"\"\n", " models_response = client.models.list()\n", " for model in models_response:\n", " if model.identifier.endswith(\"Instruct\"):\n", " model_name = model.llama_model\n", " agent_config = AgentConfig(\n", " model=model_name,\n", " instructions=\"\"\"\n", " You are a weather assistant that can provide weather information.\n", " Always specify the location clearly in your responses.\n", " Include both temperature and conditions in your summaries.\n", " \"\"\",\n", " sampling_params={\n", " \"strategy\": \"greedy\",\n", " \"temperature\": 1.0,\n", " \"top_p\": 0.9,\n", " },\n", " tools=[\n", " {\n", " \"function_name\": \"get_weather\",\n", " \"description\": \"Get weather information for a location\",\n", " \"parameters\": {\n", " \"location\": {\n", " \"param_type\": \"str\",\n", " \"description\": \"City or location name\",\n", " \"required\": True,\n", " },\n", " \"date\": {\n", " \"param_type\": \"str\",\n", " \"description\": \"Optional date (YYYY-MM-DD)\",\n", " \"required\": False,\n", " },\n", " },\n", " \"type\": \"function_call\",\n", " }\n", " ],\n", " tool_choice=\"auto\",\n", " tool_prompt_format=\"json\",\n", " input_shields=[],\n", " output_shields=[],\n", " enable_session_persistence=True\n", " )\n", "\n", " # Create the agent with the tool\n", " weather_tool = WeatherTool()\n", " agent = Agent(\n", " client=client,\n", " agent_config=agent_config,\n", " custom_tools=[weather_tool]\n", " )\n", "\n", " return agent\n", "\n", "# Example usage\n", "async def weather_example():\n", " client = LlamaStackClient(base_url=f\"http://{HOST}:{PORT}\")\n", " agent = await create_weather_agent(client)\n", " session_id = agent.create_session(\"weather-session\")\n", "\n", " queries = [\n", " \"What's the weather like in San Francisco?\",\n", " \"Tell me the weather in Tokyo tomorrow\",\n", " ]\n", "\n", " for query in queries:\n", " print(f\"\\nQuery: {query}\")\n", " print(\"-\" * 50)\n", "\n", " response = agent.create_turn(\n", " messages=[{\"role\": \"user\", \"content\": query}],\n", " session_id=session_id,\n", " )\n", "\n", " async for log in EventLogger().log(response):\n", " log.print()\n", "\n", "# For Jupyter notebooks\n", "import nest_asyncio\n", "nest_asyncio.apply()\n", "\n", "# Run the example\n", "await weather_example()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thanks for checking out this tutorial, hopefully you can now automate everything with Llama! :D\n", "\n", "Next up, we learn another hot topic of LLMs: Memory and Rag. Continue learning [here](./04_Memory101.ipynb)!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.15" } }, "nbformat": 4, "nbformat_minor": 4 }