# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import json from typing import AsyncGenerator import httpx from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.datatypes import Message from llama_models.llama3.api.tokenizer import Tokenizer from llama_stack.apis.inference import * # noqa: F403 from llama_stack.distribution.request_headers import NeedsRequestProviderData from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, ) from .config import SnowflakeImplConfig SNOWFLAKE_SUPPORTED_MODELS = { "Llama3.1-8B-Instruct": "llama3.1-8b", "Llama3.1-70B-Instruct": "llama3.1-70b", "Llama3.1-405B-Instruct": "llama3.1-405b", } class SnowflakeInferenceAdapter( ModelRegistryHelper, Inference, NeedsRequestProviderData ): def __init__(self, config: SnowflakeImplConfig) -> None: ModelRegistryHelper.__init__( self, stack_to_provider_models_map=SNOWFLAKE_SUPPORTED_MODELS ) self.config = config self.formatter = ChatFormat(Tokenizer.get_instance()) async def initialize(self) -> None: pass async def shutdown(self) -> None: pass async def completion( self, model: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: request = CompletionRequest( model=model, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) def _get_cortex_headers( self, ): snowflake_api_key = None if self.config.api_key is not None: snowflake_api_key = self.config.api_key else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.snowflake_api_key: raise ValueError( 'Pass Snowflake API Key in the header X-LlamaStack-ProviderData as { "snowflake_api_key": }' ) snowflake_api_key = provider_data.snowflake_api_key headers = { "Accept": "text/stream", "Content-Type": "application/json", "Authorization": f'Snowflake Token="{snowflake_api_key}"', } return headers def _get_cortex_client(self, timeout=30, concurrent_limit=1000): client = httpx.Client( timeout=timeout, limits=httpx.Limits( max_connections=concurrent_limit, max_keepalive_connections=concurrent_limit, ), ) return client def _get_cortex_async_client(self, timeout=30, concurrent_limit=1000): client = httpx.AsyncClient( timeout=timeout, limits=httpx.Limits( max_connections=concurrent_limit, max_keepalive_connections=concurrent_limit, ), ) return client async def _nonstream_completion( self, request: CompletionRequest ) -> ChatCompletionResponse: params = self._get_params_for_completion(request) r = self._get_cortex_client().post(**params) return process_completion_response( r, self.formatter ) # TODO VALIDATE COMPLETION PROCESSOR async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = self._get_params_for_completion(request) async def _to_async_generator(): s = self._get_cortex_client().post(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_completion_stream_response(stream, self.formatter): yield chunk def _build_options( self, sampling_params: Optional[SamplingParams], fmt: ResponseFormat ) -> dict: options = get_sampling_options(sampling_params) if fmt: if fmt.type == ResponseFormatType.json_schema.value: options["response_format"] = { "type": "json_object", "schema": fmt.json_schema, } elif fmt.type == ResponseFormatType.grammar.value: raise NotImplementedError("Grammar response format not supported yet") else: raise ValueError(f"Unknown response format {fmt.type}") return options def _get_params_for_completion(self, request: CompletionRequest) -> dict: return { "model": self.map_to_provider_model(request.model), "prompt": completion_request_to_prompt(request, self.formatter), "stream": request.stream, **self._build_options(request.sampling_params, request.response_format), } async def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion( self, request: ChatCompletionRequest ) -> ChatCompletionResponse: params = self._get_params(request) r = self._get_cortex_client().post(**params) return self._process_nonstream_snowflake_response(r.text) async def _stream_chat_completion( self, request: ChatCompletionRequest ) -> AsyncGenerator: params = self._get_params(request) async def _to_async_generator(): async with self._get_cortex_async_client() as client: async with client.stream("POST", **params) as response: async for line in response.aiter_lines(): if line.strip(): # Check if line is not empty yield line stream = _to_async_generator() async for chunk in stream: clean_chunk = self._process_snowflake_stream_response(chunk) yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.progress, delta=clean_chunk, stop_reason=None, ) ) def _get_params(self, request: ChatCompletionRequest) -> dict: return { "url": self._get_cortex_url(), "headers": self._get_cortex_headers(), "json": { "model": self.map_to_provider_model(request.model), "messages": [ { "content": chat_completion_request_to_prompt( request, self.formatter ) } ], }, } async def embeddings( self, model: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: raise NotImplementedError() def _process_nonstream_snowflake_response(self, response_str): json_objects = response_str.split("\ndata: ") json_list = [] # Iterate over each JSON object for obj in json_objects: obj = obj.strip() if obj: # Remove the 'data: ' prefix if it exists if obj.startswith("data: "): obj = obj[6:] # Load the JSON object into a Python dictionary json_dict = json.loads(obj, strict=False) # Append the JSON dictionary to the list json_list.append(json_dict) completion = "" choices = {} for chunk in json_list: choices = chunk["choices"][0] if "content" in choices["delta"].keys(): completion += choices["delta"]["content"] return completion def _process_snowflake_stream_response(self, response_str): if not response_str.startswith("data: "): return "" try: json_dict = json.loads(response_str[6:]) return json_dict["choices"][0]["delta"].get("content", "") except (json.JSONDecodeError, KeyError, IndexError): return "" def _get_cortex_url(self): account_id = self.config.account cortex_endpoint = f"https://{account_id}.snowflakecomputing.com/api/v2/cortex/inference:complete" return cortex_endpoint