{ "request": { "method": "POST", "url": "http://0.0.0.0:11434/v1/v1/chat/completions", "headers": {}, "body": { "model": "llama3.2:3b-instruct-fp16", "messages": [ { "role": "user", "content": "Test OpenAI telemetry creation" } ], "stream": false }, "endpoint": "/v1/chat/completions", "model": "llama3.2:3b-instruct-fp16" }, "response": { "body": { "__type__": "openai.types.chat.chat_completion.ChatCompletion", "__data__": { "id": "chatcmpl-271", "choices": [ { "finish_reason": "stop", "index": 0, "logprobs": null, "message": { "content": "# OpenAI Telemetry Creation Testing\n\nThis guide provides a test environment for creating and analyzing telemetries using the OpenAI API.\n\n## Prerequisites\n\n- Python 3.8 or higher\n- `requests` library\n- An OpenAI API key (create an account on the [OpenAI website](https://openai.com/))\n\n## Step 1: Install Required Libraries\n\nFirst, install the required libraries by running the following command in your terminal:\n\n```bash\npip install requests\n```\n\n## Step 2: Create a Telemetry Object\n\nCreate a new Python file (e.g., `telemetry.py`) and import the required library. Define a telemetry object with the relevant data:\n\n```python\n# Import the requests library\nimport requests\n\nclass Telemetry:\n def __init__(self, api_key):\n \"\"\"\n Initialize the telemetry object.\n\n Args:\n api_key (str): The OpenAI API key.\n \"\"\"\n\n self.api_key = api_key\n\n def create_telemetry(self, id, data):\n \"\"\"\n Create a new telemetry entry using the OpenAI API.\n\n Args:\n id (str): The ID of the model or dataset.\n data (dict): The telemetry data to be created.\n\n Returns:\n dict: The response from the OpenAI API.\n\n Raises:\n ValueError: If the request fails.\n \"\"\"\n\n url = f\"https://api.openai.com/v1/models/{id}/telemetry\"\n\n headers = {\n \"Authorization\": self.api_key,\n \"Content-Type\": \"application/json\",\n }\n\n telemetry_data = {\"events\": data}\n\n response = requests.post(url, json=telemetry_data, headers=headers)\n\n if not response.ok:\n raise ValueError(\"Failed to create telemetry\")\n\n return response.json()\n```\n\n## Step 3: Usage Example\n\nHere's an example usage of the `Telemetry` class:\n\n```python\n# Create a new Telemetry object with your OpenAI API key\ntelemetry = Telemetry(\n \"YOUR_OPENAI_API_KEY_HERE\"\n)\n\n# Define the telemetry data\ndata = {\"event\": \"example_event\"}\n\n# Create a new telemetry entry\nid = \"my_model_id\" # Replace with your model or dataset ID\n\ntry:\n result = telemetry.create_telemetry(id, data)\n print(result)\nexcept ValueError as e:\n print(e)\n```\n\nThis code creates a new `Telemetry` object, defines some sample telemetry data, and uses the `create_telemetry` method to create a new telemetry entry. The response from the OpenAI API is printed out.\n\nNote: Replace `\"YOUR_OPENAI_API_KEY_HERE\"` with your actual OpenAI API key.\n\n## Conclusion\n\nThis guide provides a basic example of how to create telemetries using the OpenAI API. You can modify the code and implement additional features as needed for your project.\n\nStay updated on our latest tutorials and guides:\n\n* [Check out our Discord channel](link): https://discord.gg/openai-exists\n\nHappy coding!", "refusal": null, "role": "assistant", "annotations": null, "audio": null, "function_call": null, "tool_calls": null } } ], "created": 1756921299, "model": "llama3.2:3b-instruct-fp16", "object": "chat.completion", "service_tier": null, "system_fingerprint": "fp_ollama", "usage": { "completion_tokens": 633, "prompt_tokens": 30, "total_tokens": 663, "completion_tokens_details": null, "prompt_tokens_details": null } } }, "is_streaming": false } }