# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from pathlib import Path import pytest from PIL import Image as PIL_Image from llama_models.llama3.api.datatypes import * # noqa: F403 from llama_stack.apis.inference import * # noqa: F403 from .utils import group_chunks THIS_DIR = Path(__file__).parent class TestVisionModelInference: @pytest.mark.asyncio async def test_vision_chat_completion_non_streaming( self, inference_model, inference_stack ): inference_impl, _ = inference_stack provider = inference_impl.routing_table.get_provider_impl(inference_model) if provider.__provider_spec__.provider_type not in ( "meta-reference", "remote::together", "remote::fireworks", "remote::ollama", ): pytest.skip( "Other inference providers don't support vision chat completion() yet" ) images = [ ImageMedia(image=PIL_Image.open(THIS_DIR / "pasta.jpeg")), ImageMedia( image=URL( uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg" ) ), ] # These are a bit hit-and-miss, need to be careful expected_strings_to_check = [ ["spaghetti"], ["puppy"], ] for image, expected_strings in zip(images, expected_strings_to_check): response = await inference_impl.chat_completion( model=inference_model, messages=[ SystemMessage(content="You are a helpful assistant."), UserMessage( content=[image, "Describe this image in two sentences."] ), ], stream=False, ) assert isinstance(response, ChatCompletionResponse) assert response.completion_message.role == "assistant" assert isinstance(response.completion_message.content, str) for expected_string in expected_strings: assert expected_string in response.completion_message.content @pytest.mark.asyncio async def test_vision_chat_completion_streaming( self, inference_model, inference_stack ): inference_impl, _ = inference_stack provider = inference_impl.routing_table.get_provider_impl(inference_model) if provider.__provider_spec__.provider_type not in ( "meta-reference", "remote::together", "remote::fireworks", "remote::ollama", ): pytest.skip( "Other inference providers don't support vision chat completion() yet" ) images = [ ImageMedia( image=URL( uri="https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg" ) ), ] expected_strings_to_check = [ ["puppy"], ] for image, expected_strings in zip(images, expected_strings_to_check): response = [ r async for r in await inference_impl.chat_completion( model=inference_model, messages=[ SystemMessage(content="You are a helpful assistant."), UserMessage( content=[image, "Describe this image in two sentences."] ), ], stream=True, ) ] assert len(response) > 0 assert all( isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response ) grouped = group_chunks(response) assert len(grouped[ChatCompletionResponseEventType.start]) == 1 assert len(grouped[ChatCompletionResponseEventType.progress]) > 0 assert len(grouped[ChatCompletionResponseEventType.complete]) == 1 content = "".join( chunk.event.delta for chunk in grouped[ChatCompletionResponseEventType.progress] ) for expected_string in expected_strings: assert expected_string in content