# Sample Vector IO Configuration with Configurable Embedding Models # # This example demonstrates how to configure embedding models for different vector IO providers. # Each provider can have its own default embedding model and dimension configuration. # Vector IO providers with different embedding configurations vector_io: # Fast local search with lightweight embeddings - provider_id: fast_local_search provider_type: inline::faiss config: db_path: ~/.llama/distributions/together/faiss_fast.db # Use lightweight embedding model for fast processing embedding_model: "all-MiniLM-L6-v2" embedding_dimension: 384 # Fixed dimension for this model # Compact storage with variable dimension embeddings - provider_id: compact_storage provider_type: inline::faiss config: db_path: ~/.llama/distributions/together/faiss_compact.db # Use Matryoshka embeddings with custom dimension embedding_model: "nomic-embed-text" embedding_dimension: 256 # Reduced from default 768 for storage efficiency # High-quality persistent search - provider_id: persistent_search provider_type: inline::sqlite_vec config: db_path: ~/.llama/distributions/together/sqlite_vec.db # Use high-quality embedding model embedding_model: "sentence-transformers/all-mpnet-base-v2" embedding_dimension: 768 # Full dimension for best quality # Remote Qdrant with cloud embeddings - provider_id: cloud_search provider_type: remote::qdrant config: api_key: "${env.QDRANT_API_KEY}" url: "${env.QDRANT_URL}" # Use OpenAI embeddings for cloud deployment embedding_model: "text-embedding-3-small" embedding_dimension: 1536 # OpenAI's default dimension # Remote ChromaDB without explicit embedding config (uses system default) - provider_id: default_search provider_type: remote::chroma config: host: "${env.CHROMA_HOST:=localhost}" port: 8000 # No embedding_model specified - will use system default from model registry # Milvus with production-grade configuration - provider_id: production_search provider_type: remote::milvus config: uri: "${env.MILVUS_ENDPOINT}" token: "${env.MILVUS_TOKEN}" kvstore: type: sqlite db_path: ~/.llama/distributions/together/milvus_registry.db # High-performance embedding model for production embedding_model: "text-embedding-3-large" embedding_dimension: 3072 # Large dimension for maximum quality # Model registry - ensure embedding models are properly configured models: # Lightweight embedding model (384 dimensions) - model_id: all-MiniLM-L6-v2 provider_id: local_inference provider_model_id: sentence-transformers/all-MiniLM-L6-v2 model_type: embedding metadata: embedding_dimension: 384 description: "Fast, lightweight embeddings for general use" # Matryoshka embedding model (variable dimensions) - model_id: nomic-embed-text provider_id: local_inference provider_model_id: nomic-embed-text model_type: embedding metadata: embedding_dimension: 768 # Default, can be overridden description: "Flexible Matryoshka embeddings supporting variable dimensions" # High-quality embedding model (768 dimensions) - model_id: sentence-transformers/all-mpnet-base-v2 provider_id: local_inference provider_model_id: sentence-transformers/all-mpnet-base-v2 model_type: embedding metadata: embedding_dimension: 768 description: "High-quality embeddings for semantic search" # OpenAI embedding models (for cloud usage) - model_id: text-embedding-3-small provider_id: openai_inference # Would need OpenAI provider configured provider_model_id: text-embedding-3-small model_type: embedding metadata: embedding_dimension: 1536 # Default OpenAI dimension description: "OpenAI's efficient embedding model" - model_id: text-embedding-3-large provider_id: openai_inference provider_model_id: text-embedding-3-large model_type: embedding metadata: embedding_dimension: 3072 # Large dimension for maximum quality description: "OpenAI's highest quality embedding model" # Optional: Configure specific vector databases (will use provider defaults) vector_dbs: # Uses fast_local_search provider defaults (all-MiniLM-L6-v2, 384 dims) - vector_db_id: general_docs provider_id: fast_local_search # Uses compact_storage provider defaults (nomic-embed-text, 256 dims) - vector_db_id: compressed_knowledge provider_id: compact_storage # Uses persistent_search provider defaults (all-mpnet-base-v2, 768 dims) - vector_db_id: semantic_library provider_id: persistent_search # Server configuration server: host: 0.0.0.0 port: 5000 # Logging configuration logging: level: INFO