import argparse import os import textwrap from pathlib import Path from toolchain.cli.subcommand import Subcommand from toolchain.utils import DEFAULT_DUMP_DIR CONFIGS_BASE_DIR = os.path.join(DEFAULT_DUMP_DIR, "configs") class InferenceConfigure(Subcommand): """Llama cli for configuring llama toolchain configs""" def __init__(self, subparsers: argparse._SubParsersAction): super().__init__() self.parser = subparsers.add_parser( "configure", prog="llama inference configure", description="Configure llama toolchain inference configs", epilog=textwrap.dedent( """ Example: llama inference configure """ ), formatter_class=argparse.RawTextHelpFormatter, ) self._add_arguments() self.parser.set_defaults(func=self._run_inference_configure_cmd) def _add_arguments(self): pass def read_user_inputs(self): checkpoint_dir = input("Enter the checkpoint directory for the model (e.g., ~/.llama/checkpoints/Meta-Llama-3-8B/): ") model_parallel_size = input("Enter model parallel size (e.g., 1 for 8B / 8 for 70B and 405B): ") return checkpoint_dir, model_parallel_size def write_output_yaml( self, checkpoint_dir, model_parallel_size, yaml_output_path ): current_dir = os.path.dirname(os.path.abspath(__file__)) default_conf_path = os.path.join(current_dir, "default_configuration.yaml") with open(default_conf_path, "r") as f: yaml_content = f.read() yaml_content = yaml_content.format( checkpoint_dir=checkpoint_dir, model_parallel_size=model_parallel_size, ) with open(yaml_output_path, 'w') as yaml_file: yaml_file.write(yaml_content.strip()) print(f"YAML configuration has been written to {yaml_output_path}") def _run_inference_configure_cmd(self, args: argparse.Namespace) -> None: checkpoint_dir, model_parallel_size = self.read_user_inputs() checkpoint_dir = os.path.expanduser(checkpoint_dir) if not ( checkpoint_dir.endswith("original") or checkpoint_dir.endswith("original/") ): checkpoint_dir = os.path.join(checkpoint_dir, "original") os.makedirs(CONFIGS_BASE_DIR, exist_ok=True) yaml_output_path = Path(CONFIGS_BASE_DIR) / "inference.yaml" self.write_output_yaml( checkpoint_dir, model_parallel_size, yaml_output_path, )