--- orphan: true --- # Starter Distribution ```{toctree} :maxdepth: 2 :hidden: self ``` The `llamastack/distribution-starter` distribution is a comprehensive, multi-provider distribution that includes most of the available inference providers in Llama Stack. It's designed to be a one-stop solution for developers who want to experiment with different AI providers without having to configure each one individually. ## Provider Composition The starter distribution consists of the following configurations: | API | Provider(s) | |-----|-------------| | agents | `inline::meta-reference` | | datasetio | `remote::huggingface`, `inline::localfs` | | eval | `inline::meta-reference` | | files | `inline::localfs` | | inference | `remote::openai`, `remote::fireworks`, `remote::together`, `remote::ollama`, `remote::anthropic`, `remote::gemini`, `remote::groq`, `remote::sambanova`, `remote::vllm`, `remote::tgi`, `remote::cerebras`, `remote::llama-openai-compat`, `remote::nvidia`, `remote::hf::serverless`, `remote::hf::endpoint`, `inline::sentence-transformers`, `remote::passthrough` | | safety | `inline::llama-guard` | | post_training | `inline::huggingface` | | scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` | | telemetry | `inline::meta-reference` | | tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` | | vector_io | `inline::faiss`, `inline::sqlite-vec`, `remote::chromadb`, `remote::pgvector` | ## Inference Providers The starter distribution includes a comprehensive set of inference providers: - **OpenAI**: GPT-4, GPT-3.5, O1, O3, O4 models and text embeddings - point to the relevant provider configuration documentation for more details - **Fireworks**: Llama 3.1, 3.2, 3.3, 4 Scout, 4 Maverick models and embeddings - **Together**: Llama 3.1, 3.2, 3.3, 4 Scout, 4 Maverick models and embeddings - **Anthropic**: Claude 3.5 Sonnet, Claude 3.7 Sonnet, Claude 3.5 Haiku, and Voyage embeddings - **Gemini**: Gemini 1.5, 2.0, 2.5 models and text embeddings - **Groq**: Fast Llama models (3.1, 3.2, 3.3, 4 Scout, 4 Maverick) - **SambaNova**: Llama 3.1, 3.2, 3.3, 4 Scout, 4 Maverick models - **Cerebras**: Cerebras AI models - **NVIDIA**: NVIDIA NIM models - **HuggingFace**: Serverless and endpoint models - **Bedrock**: AWS Bedrock models - **Passthrough**: Passthrough provider - use this to connect to any other inference provider that is not supported by Llama Stack - **Ollama**: Local Ollama models - **vLLM**: remote vLLM server - **TGI**: Text Generation Inference server - Dell Enterprise Hub's custom TGI container too (use `DEH_URL`) - **Sentence Transformers**: Local embedding models All providers are **disabled** by default. So you need to enable them by setting the environment variables. See [Enabling Providers](#enabling-providers) for more details. ## Vector Providers The starter distribution includes a comprehensive set of vector providers: - **FAISS**: Local FAISS vector store - enabled by default - **SQLite**: Local SQLite vector store - disabled by default - **ChromaDB**: Remote ChromaDB server - disabled by default - **PGVector**: Remote PGVector server - disabled by default ## Enabling Providers You can enable specific providers by setting their provider ID to a string value using environment variables. For instance, to enable the Ollama provider, you can set the `ENABLE_OLLAMA` environment variable to `ollama`. ```bash export ENABLE_OLLAMA=ollama ``` To disable a provider, you can set the environment variable to `ENABLE_OLLAMA=__disabled__`. ## Running the Distribution You can run the starter distribution via Docker or directly using the Llama Stack CLI. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash LLAMA_STACK_PORT=8321 docker run \ -it \ --pull always \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -e ENABLE_OLLAMA=ollama \ -e OLLAMA_INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \ llamastack/distribution-starter \ --port $LLAMA_STACK_PORT ``` You can also use the `llama stack run` command to run the distribution. ```bash llama stack run distributions/starter/run.yaml \ --port 8321 \ --env ENABLE_OLLAMA=ollama \ --env OLLAMA_INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct ``` ## Storage The starter distribution uses SQLite for local storage of various components: - **Metadata store**: `~/.llama/distributions/starter/registry.db` - **Inference store**: `~/.llama/distributions/starter/inference_store.db` - **FAISS store**: `~/.llama/distributions/starter/faiss_store.db` - **SQLite vector store**: `~/.llama/distributions/starter/sqlite_vec.db` - **Files metadata**: `~/.llama/distributions/starter/files_metadata.db` - **Agents store**: `~/.llama/distributions/starter/agents_store.db` - **Responses store**: `~/.llama/distributions/starter/responses_store.db` - **Trace store**: `~/.llama/distributions/starter/trace_store.db` - **Evaluation store**: `~/.llama/distributions/starter/meta_reference_eval.db` - **Dataset I/O stores**: Various HuggingFace and local filesystem stores ## Benefits of the Starter Distribution 1. **Comprehensive Coverage**: Includes most popular AI providers in one distribution 2. **Flexible Configuration**: Easy to enable/disable providers based on your needs 3. **No Local GPU Required**: Most providers are cloud-based, making it accessible to developers without high-end hardware 4. **Easy Migration**: Start with hosted providers and gradually move to local ones as needed 5. **Production Ready**: Includes safety, evaluation, and telemetry components 6. **Tool Integration**: Comes with web search, RAG, and model context protocol tools The starter distribution is ideal for developers who want to experiment with different AI providers, build prototypes quickly, or create applications that can work with multiple AI backends.