{ "request": { "method": "POST", "url": "http://localhost:11434/api/generate", "headers": {}, "body": { "model": "llama3.2:3b", "raw": true, "prompt": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nTest metrics generation 2<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", "options": { "temperature": 0.0 }, "stream": false }, "endpoint": "/api/generate", "model": "llama3.2:3b" }, "response": { "body": { "__type__": "ollama._types.GenerateResponse", "__data__": { "model": "llama3.2:3b", "created_at": "2025-08-11T15:56:13.082679Z", "done": true, "done_reason": "stop", "total_duration": 2606245291, "load_duration": 9979708, "prompt_eval_count": 21, "prompt_eval_duration": 23000000, "eval_count": 321, "eval_duration": 2572000000, "response": "Here are some test metrics that can be used to evaluate the performance of a system:\n\n1. **Accuracy**: Measures how close the predicted values are to the actual values.\n2. **Precision**: Measures the proportion of true positives among all positive predictions made by the model.\n3. **Recall**: Measures the proportion of true positives among all actual positive instances.\n4. **F1-score**: The harmonic mean of precision and recall, providing a balanced measure of both.\n5. **Mean Squared Error (MSE)**: Measures the average squared difference between predicted and actual values.\n6. **Mean Absolute Error (MAE)**: Measures the average absolute difference between predicted and actual values.\n7. **Root Mean Squared Percentage Error (RMSPE)**: A variation of MSE that expresses errors as a percentage of the actual value.\n8. **Coefficient of Determination (R-squared, R2)**: Measures how well the model explains the variance in the data.\n9. **Mean Absolute Percentage Error (MAPE)**: Measures the average absolute percentage difference between predicted and actual values.\n10. **Mean Squared Logarithmic Error (MSLE)**: A variation of MSE that is more suitable for skewed distributions.\n\nThese metrics can be used to evaluate different aspects of a system's performance, such as:\n\n* Classification models: accuracy, precision, recall, F1-score\n* Regression models: MSE, MAE, RMSPE, R2\n* Time series forecasting: MAPE, MSLE\n\nNote that the choice of metric depends on the specific problem and data.", "thinking": null, "context": null } }, "is_streaming": false } }