# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List import httpx from huggingface_hub import InferenceClient from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.datatypes import Message, StopReason from llama_models.llama3.api.tokenizer import Tokenizer from llama_toolchain.inference.api import * # noqa: F403 SUPPORTED_MODELS = { "Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct", "Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", "Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct", } class TGIInferenceAdapter(Inference): def __init__(self, url: str) -> None: self.url = url.rstrip("/") tokenizer = Tokenizer.get_instance() self.formatter = ChatFormat(tokenizer) self.model = None async def initialize(self) -> None: hf_models = {v: k for k, v in SUPPORTED_MODELS.items()} async with httpx.AsyncClient() as client: response = await client.get(f"{self.url}/info") response.raise_for_status() info = response.json() if "model_id" not in info: raise RuntimeError("Missing model_id in model info") model_id = info["model_id"] if model_id not in hf_models: raise RuntimeError( f"TGI is serving model: {model_id}, use one of the supported models: {','.join(hf_models.keys())}" ) self.model = hf_models[model_id] async def shutdown(self) -> None: pass async def completion(self, request: CompletionRequest) -> AsyncGenerator: raise NotImplementedError() def _convert_messages(self, messages: List[Message]) -> List[Message]: ret = [] for message in messages: if message.role == "ipython": role = "tool" else: role = message.role ret.append({"role": role, "content": message.content}) return ret def get_chat_options(self, request: ChatCompletionRequest) -> dict: options = {} if request.sampling_params is not None: for attr in {"temperature", "top_p", "top_k", "max_tokens"}: if getattr(request.sampling_params, attr): options[attr] = getattr(request.sampling_params, attr) return options async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: if request.model != self.model: raise ValueError( f"Model mismatch, expected: {self.model}, got: {request.model}" ) options = self.get_chat_options(request) client = InferenceClient(base_url=self.url) if not request.stream: r = client.chat.completions.create( model=SUPPORTED_MODELS[self.model], messages=self._convert_messages(request.messages), stream=False, **options, ) stop_reason = None if r.choices[0].finish_reason: if r.choices[0].finish_reason == "stop": stop_reason = StopReason.end_of_turn elif r.choices[0].finish_reason == "length": stop_reason = StopReason.out_of_tokens completion_message = self.formatter.decode_assistant_message_from_content( r.choices[0].message.content, stop_reason ) yield ChatCompletionResponse( completion_message=completion_message, logprobs=None, ) else: yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.start, delta="", ) ) buffer = "" ipython = False stop_reason = None response = client.chat.completions.create( model=SUPPORTED_MODELS[self.model], messages=self._convert_messages(request.messages), stream=True, **options, ) for chunk in response: if chunk.choices[0].finish_reason: if stop_reason is None and chunk.choices[0].finish_reason == "stop": stop_reason = StopReason.end_of_turn elif ( stop_reason is None and chunk.choices[0].finish_reason == "length" ): stop_reason = StopReason.out_of_tokens break text = chunk.choices[0].delta.content if text is None: continue # check if its a tool call ( aka starts with <|python_tag|> ) if not ipython and text.startswith("<|python_tag|>"): ipython = True yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.progress, delta=ToolCallDelta( content="", parse_status=ToolCallParseStatus.started, ), ) ) buffer += text continue if ipython: if text == "<|eot_id|>": stop_reason = StopReason.end_of_turn text = "" continue elif text == "<|eom_id|>": stop_reason = StopReason.end_of_message text = "" continue buffer += text delta = ToolCallDelta( content=text, parse_status=ToolCallParseStatus.in_progress, ) yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.progress, delta=delta, stop_reason=stop_reason, ) ) else: buffer += text yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.progress, delta=text, stop_reason=stop_reason, ) ) # parse tool calls and report errors message = self.formatter.decode_assistant_message_from_content( buffer, stop_reason ) parsed_tool_calls = len(message.tool_calls) > 0 if ipython and not parsed_tool_calls: yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.progress, delta=ToolCallDelta( content="", parse_status=ToolCallParseStatus.failure, ), stop_reason=stop_reason, ) ) for tool_call in message.tool_calls: yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.progress, delta=ToolCallDelta( content=tool_call, parse_status=ToolCallParseStatus.success, ), stop_reason=stop_reason, ) ) yield ChatCompletionResponseStreamChunk( event=ChatCompletionResponseEvent( event_type=ChatCompletionResponseEventType.complete, delta="", stop_reason=stop_reason, ) )