llama-stack-mirror/tests/unit/providers/nvidia/test_supervised_fine_tuning.py
Mustafa Elbehery fe6af7dc8b
Some checks failed
Integration Tests / discover-tests (push) Successful in 3s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 10s
Test Llama Stack Build / generate-matrix (push) Successful in 10s
Python Package Build Test / build (3.13) (push) Failing after 11s
Test Llama Stack Build / build-single-provider (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 18s
Test External Providers / test-external-providers (venv) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 21s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 23s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 20s
Integration Tests / test-matrix (push) Failing after 13s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 16s
Unit Tests / unit-tests (3.13) (push) Failing after 17s
Test Llama Stack Build / build (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 20s
Unit Tests / unit-tests (3.12) (push) Failing after 29s
Python Package Build Test / build (3.12) (push) Failing after 1m46s
Update ReadTheDocs / update-readthedocs (push) Failing after 1m44s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 1m51s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1m53s
Pre-commit / pre-commit (push) Successful in 3m17s
chore(test): migrate unit tests from unittest to pytest nvidia test f… (#2794)
This PR replaces unittest with pytest.

Part of https://github.com/meta-llama/llama-stack/issues/2680

cc @leseb

Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
2025-07-18 12:32:19 +02:00

325 lines
11 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import warnings
from unittest.mock import patch
import pytest
from llama_stack.apis.post_training.post_training import (
DataConfig,
DatasetFormat,
LoraFinetuningConfig,
OptimizerConfig,
OptimizerType,
QATFinetuningConfig,
TrainingConfig,
)
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
from llama_stack.providers.remote.post_training.nvidia.post_training import (
ListNvidiaPostTrainingJobs,
NvidiaPostTrainingAdapter,
NvidiaPostTrainingConfig,
NvidiaPostTrainingJob,
NvidiaPostTrainingJobStatusResponse,
)
@pytest.fixture
def nvidia_post_training_adapter():
"""Fixture to create and configure the NVIDIA post training adapter."""
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None)
adapter = NvidiaPostTrainingAdapter(config)
with patch.object(adapter, "_make_request") as mock_make_request:
yield adapter, mock_make_request
def _assert_request(mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
"""Helper method to verify request details in mock calls."""
call_args = mock_call.call_args
if expected_method and expected_path:
if isinstance(call_args[0], tuple) and len(call_args[0]) == 2:
assert call_args[0] == (expected_method, expected_path)
else:
assert call_args[1]["method"] == expected_method
assert call_args[1]["path"] == expected_path
if expected_params:
assert call_args[1]["params"] == expected_params
if expected_json:
for key, value in expected_json.items():
assert call_args[1]["json"][key] == value
async def test_supervised_fine_tune(nvidia_post_training_adapter):
"""Test the supervised fine-tuning API call."""
adapter, mock_make_request = nvidia_post_training_adapter
mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"config": {
"schema_version": "1.0",
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.569837",
"custom_fields": {},
"name": "meta-llama/Llama-3.1-8B-Instruct",
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
"model_path": "llama-3_1-8b-instruct",
"training_types": [],
"finetuning_types": ["lora"],
"precision": "bf16",
"num_gpus": 4,
"num_nodes": 1,
"micro_batch_size": 1,
"tensor_parallel_size": 1,
"max_seq_length": 4096,
},
"dataset": {
"schema_version": "1.0",
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.542660",
"custom_fields": {},
"name": "sample-basic-test",
"version_id": "main",
"version_tags": [],
},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"alpha": 16},
},
"output_model": "default/job-1234",
"status": "created",
"project": "default",
"custom_fields": {},
"ownership": {"created_by": "me", "access_policies": {}},
}
algorithm_config = LoraFinetuningConfig(
type="LoRA",
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
data_config = DataConfig(
dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
)
optimizer_config = OptimizerConfig(
optimizer_type=OptimizerType.adam,
lr=0.0001,
weight_decay=0.01,
num_warmup_steps=100,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
training_job = await adapter.supervised_fine_tune(
job_uuid="1234",
model="meta/llama-3.2-1b-instruct@v1.0.0+L40",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=convert_pydantic_to_json_value(training_config),
logger_config={},
hyperparam_search_config={},
)
# check the output is a PostTrainingJob
assert isinstance(training_job, NvidiaPostTrainingJob)
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.assert_called_once()
_assert_request(
mock_make_request,
"POST",
"/v1/customization/jobs",
expected_json={
"config": "meta/llama-3.2-1b-instruct@v1.0.0+L40",
"dataset": {"name": "sample-basic-test", "namespace": "default"},
"hyperparameters": {
"training_type": "sft",
"finetuning_type": "lora",
"epochs": 2,
"batch_size": 16,
"learning_rate": 0.0001,
"weight_decay": 0.01,
"lora": {"alpha": 16},
},
},
)
async def test_supervised_fine_tune_with_qat(nvidia_post_training_adapter):
"""Test that QAT configuration raises NotImplementedError."""
adapter, mock_make_request = nvidia_post_training_adapter
algorithm_config = QATFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
data_config = DataConfig(
dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
)
optimizer_config = OptimizerConfig(
optimizer_type=OptimizerType.adam,
lr=0.0001,
weight_decay=0.01,
num_warmup_steps=100,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
# This will raise NotImplementedError since QAT is not supported
with pytest.raises(NotImplementedError):
await adapter.supervised_fine_tune(
job_uuid="1234",
model="meta/llama-3.2-1b-instruct@v1.0.0+L40",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=convert_pydantic_to_json_value(training_config),
logger_config={},
hyperparam_search_config={},
)
async def test_get_training_job_status(nvidia_post_training_adapter):
"""Test getting training job status with different statuses."""
adapter, mock_make_request = nvidia_post_training_adapter
customizer_status_to_job_status = [
("running", "in_progress"),
("completed", "completed"),
("failed", "failed"),
("cancelled", "cancelled"),
("pending", "scheduled"),
("unknown", "scheduled"),
]
for customizer_status, expected_status in customizer_status_to_job_status:
mock_make_request.return_value = {
"created_at": "2024-12-09T04:06:28.580220",
"updated_at": "2024-12-09T04:21:19.852832",
"status": customizer_status,
"steps_completed": 1210,
"epochs_completed": 2,
"percentage_done": 100.0,
"best_epoch": 2,
"train_loss": 1.718016266822815,
"val_loss": 1.8661999702453613,
}
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
status = await adapter.get_training_job_status(job_uuid=job_id)
assert isinstance(status, NvidiaPostTrainingJobStatusResponse)
assert status.status.value == expected_status
# Note: The response object inherits extra fields via ConfigDict(extra="allow")
# So these attributes should be accessible using getattr with defaults
assert getattr(status, "steps_completed", None) == 1210
assert getattr(status, "epochs_completed", None) == 2
assert getattr(status, "percentage_done", None) == 100.0
assert getattr(status, "best_epoch", None) == 2
assert getattr(status, "train_loss", None) == 1.718016266822815
assert getattr(status, "val_loss", None) == 1.8661999702453613
_assert_request(
mock_make_request,
"GET",
f"/v1/customization/jobs/{job_id}/status",
expected_params={"job_id": job_id},
)
mock_make_request.reset_mock()
async def test_get_training_jobs(nvidia_post_training_adapter):
"""Test getting list of training jobs."""
adapter, mock_make_request = nvidia_post_training_adapter
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
mock_make_request.return_value = {
"data": [
{
"id": job_id,
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:21:19.852832",
"config": {
"name": "meta-llama/Llama-3.1-8B-Instruct",
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
},
"dataset": {"name": "default/sample-basic-test"},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
},
"output_model": "default/job-1234",
"status": "completed",
"project": "default",
}
]
}
jobs = await adapter.get_training_jobs()
assert isinstance(jobs, ListNvidiaPostTrainingJobs)
assert len(jobs.data) == 1
job = jobs.data[0]
assert job.job_uuid == job_id
assert job.status.value == "completed"
mock_make_request.assert_called_once()
_assert_request(
mock_make_request,
"GET",
"/v1/customization/jobs",
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
)
async def test_cancel_training_job(nvidia_post_training_adapter):
"""Test canceling a training job."""
adapter, mock_make_request = nvidia_post_training_adapter
mock_make_request.return_value = {} # Empty response for successful cancellation
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
result = await adapter.cancel_training_job(job_uuid=job_id)
assert result is None
mock_make_request.assert_called_once()
_assert_request(
mock_make_request,
"POST",
f"/v1/customization/jobs/{job_id}/cancel",
expected_params={"job_id": job_id},
)