llama-stack-mirror/benchmarking/k8s-benchmark/stack-configmap.yaml
ehhuang 4c2fcb6b51
Some checks failed
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 3s
Vector IO Integration Tests / test-matrix (push) Failing after 6s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 8s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 13s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 7s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Python Package Build Test / build (3.12) (push) Failing after 10s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 18s
API Conformance Tests / check-schema-compatibility (push) Successful in 22s
UI Tests / ui-tests (22) (push) Successful in 29s
Pre-commit / pre-commit (push) Successful in 1m25s
chore: refactor server.main (#3462)
# What does this PR do?
As shown in #3421, we can scale stack to handle more RPS with k8s
replicas. This PR enables multi process stack with uvicorn --workers so
that we can achieve the same scaling without being in k8s.

To achieve that we refactor main to split out the app construction
logic. This method needs to be non-async. We created a new `Stack` class
to house impls and have a `start()` method to be called in lifespan to
start background tasks instead of starting them in the old
`construct_stack`. This way we avoid having to manage an event loop
manually.


## Test Plan
CI

> uv run --with llama-stack python -m llama_stack.core.server.server
benchmarking/k8s-benchmark/stack_run_config.yaml

works.

> LLAMA_STACK_CONFIG=benchmarking/k8s-benchmark/stack_run_config.yaml uv
run uvicorn llama_stack.core.server.server:create_app --port 8321
--workers 4

works.
2025-09-18 21:11:13 -07:00

141 lines
4.6 KiB
YAML

apiVersion: v1
data:
stack_run_config.yaml: |
version: '2'
image_name: kubernetes-benchmark-demo
apis:
- agents
- files
- inference
- files
- safety
- telemetry
- tool_runtime
- vector_io
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL:=http://localhost:8000/v1}
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
api_token: ${env.VLLM_API_TOKEN:=fake}
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
- provider_id: sentence-transformers
provider_type: inline::sentence-transformers
config: {}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
vector_io:
- provider_id: ${env.ENABLE_CHROMADB:+chromadb}
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL:=}
kvstore:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
files:
- provider_id: meta-reference-files
provider_type: inline::localfs
config:
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
metadata_store:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config:
excluded_categories: []
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
responses_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
sinks: ${env.TELEMETRY_SINKS:=console}
tool_runtime:
- provider_id: brave-search
provider_type: remote::brave-search
config:
api_key: ${env.BRAVE_SEARCH_API_KEY:+}
max_results: 3
- provider_id: tavily-search
provider_type: remote::tavily-search
config:
api_key: ${env.TAVILY_SEARCH_API_KEY:+}
max_results: 3
- provider_id: rag-runtime
provider_type: inline::rag-runtime
config: {}
- provider_id: model-context-protocol
provider_type: remote::model-context-protocol
config: {}
metadata_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
table_name: llamastack_kvstore
inference_store:
type: postgres
host: ${env.POSTGRES_HOST:=localhost}
port: ${env.POSTGRES_PORT:=5432}
db: ${env.POSTGRES_DB:=llamastack}
user: ${env.POSTGRES_USER:=llamastack}
password: ${env.POSTGRES_PASSWORD:=llamastack}
models:
- metadata:
embedding_dimension: 384
model_id: all-MiniLM-L6-v2
provider_id: sentence-transformers
model_type: embedding
- model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
model_type: llm
shields:
- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}
vector_dbs: []
datasets: []
scoring_fns: []
benchmarks: []
tool_groups:
- toolgroup_id: builtin::websearch
provider_id: tavily-search
- toolgroup_id: builtin::rag
provider_id: rag-runtime
server:
port: 8323
kind: ConfigMap
metadata:
creationTimestamp: null
name: llama-stack-config