llama-stack-mirror/tests/integration/recordings/responses/dd9e7d5913e9.json
Eric Huang 8f57c6a7e8 endpoint
# What does this PR do?


## Test Plan
# What does this PR do?


## Test Plan
2025-08-01 16:16:05 -07:00

59 lines
3.5 KiB
JSON

{
"request": {
"method": "POST",
"url": "http://localhost:11434/api/generate",
"headers": {},
"body": {
"model": "llama3.2:3b-instruct-fp16",
"raw": true,
"prompt": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant. You have access to functions, but you should only use them if they are required.\nYou are an expert in composing functions. You are given a question and a set of possible functions.\nBased on the question, you may or may not need to make one function/tool call to achieve the purpose.\n\nIf you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]\nIf you decide to invoke a function, you SHOULD NOT include any other text in the response. besides the function call in the above format.\nFor a boolean parameter, be sure to use `True` or `False` (capitalized) for the value.\n\n\nHere is a list of functions in JSON format that you can invoke.\n\n[\n {\n \"name\": \"get_object_namespace_list\",\n \"description\": \"Get the list of objects in a namespace\",\n \"parameters\": {\n \"type\": \"dict\",\n \"required\": [\"kind\", \"namespace\"],\n \"properties\": {\n \"kind\": {\n \"type\": \"string\",\n \"description\": \"the type of object\"\n },\n \"namespace\": {\n \"type\": \"string\",\n \"description\": \"the name of the namespace\"\n }\n }\n }\n }\n]\n\nYou can answer general questions or invoke tools when necessary.\nIn addition to tool calls, you should also augment your responses by using the tool outputs.\nYou are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWhat pods are in the namespace openshift-lightspeed?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n[get_object_namespace_list(kind=\"pod\", namespace=\"openshift-lightspeed\")]<|eot_id|><|start_header_id|>ipython<|end_header_id|>\n\nthe objects are pod1, pod2, pod3<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
"options": {
"temperature": 0.0
},
"stream": true
},
"endpoint": "/api/generate",
"model": "llama3.2:3b-instruct-fp16"
},
"response": {
"body": [
{
"__type__": "ollama._types.GenerateResponse",
"__data__": {
"model": "llama3.2:3b-instruct-fp16",
"created_at": "2025-08-01T20:57:11.920796Z",
"done": false,
"done_reason": null,
"total_duration": null,
"load_duration": null,
"prompt_eval_count": null,
"prompt_eval_duration": null,
"eval_count": null,
"eval_duration": null,
"response": "[]",
"thinking": null,
"context": null
}
},
{
"__type__": "ollama._types.GenerateResponse",
"__data__": {
"model": "llama3.2:3b-instruct-fp16",
"created_at": "2025-08-01T20:57:11.963674Z",
"done": true,
"done_reason": "stop",
"total_duration": 837987583,
"load_duration": 158475167,
"prompt_eval_count": 386,
"prompt_eval_duration": 617000000,
"eval_count": 2,
"eval_duration": 60000000,
"response": "",
"thinking": null,
"context": null
}
}
],
"is_streaming": true
}
}