mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 09:53:45 +00:00
Some checks failed
Pre-commit / pre-commit (push) Failing after 2s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
Vector IO Integration Tests / test-matrix (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / build-single-provider (push) Failing after 5s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Python Package Build Test / build (3.12) (push) Failing after 2s
Python Package Build Test / build (3.13) (push) Failing after 1s
Test llama stack list-deps / generate-matrix (push) Successful in 4s
Test llama stack list-deps / show-single-provider (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 11s
Test llama stack list-deps / list-deps-from-config (push) Failing after 4s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test llama stack list-deps / list-deps (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 9s
UI Tests / ui-tests (22) (push) Successful in 48s
Implements AWS Bedrock inference provider using OpenAI-compatible endpoint for Llama models available through Bedrock. Closes: #3410 ## What does this PR do? Adds AWS Bedrock as an inference provider using the OpenAI-compatible endpoint. This lets us use Bedrock models (GPT-OSS, Llama) through the standard llama-stack inference API. The implementation uses LiteLLM's OpenAI client under the hood, so it gets all the OpenAI compatibility features. The provider handles per-request API key overrides via headers. ## Test Plan **Tested the following scenarios:** - Non-streaming completion - basic request/response flow - Streaming completion - SSE streaming with chunked responses - Multi-turn conversations - context retention across turns - Tool calling - function calling with proper tool_calls format # Bedrock OpenAI-Compatible Provider - Test Results **Model:** `bedrock-inference/openai.gpt-oss-20b-1:0` --- ## Test 1: Model Listing **Request:** ```http GET /v1/models HTTP/1.1 ``` **Response:** ```http HTTP/1.1 200 OK Content-Type: application/json { "data": [ {"identifier": "bedrock-inference/openai.gpt-oss-20b-1:0", ...}, {"identifier": "bedrock-inference/openai.gpt-oss-40b-1:0", ...} ] } ``` --- ## Test 2: Non-Streaming Completion **Request:** ```http POST /v1/chat/completions HTTP/1.1 Content-Type: application/json { "model": "bedrock-inference/openai.gpt-oss-20b-1:0", "messages": [{"role": "user", "content": "Say 'Hello from Bedrock' and nothing else"}], "stream": false } ``` **Response:** ```http HTTP/1.1 200 OK Content-Type: application/json { "choices": [{ "finish_reason": "stop", "message": {"content": "...Hello from Bedrock"} }], "usage": {"prompt_tokens": 79, "completion_tokens": 50, "total_tokens": 129} } ``` --- ## Test 3: Streaming Completion **Request:** ```http POST /v1/chat/completions HTTP/1.1 Content-Type: application/json { "model": "bedrock-inference/openai.gpt-oss-20b-1:0", "messages": [{"role": "user", "content": "Count from 1 to 5"}], "stream": true } ``` **Response:** ```http HTTP/1.1 200 OK Content-Type: text/event-stream [6 SSE chunks received] Final content: "1, 2, 3, 4, 5" ``` --- ## Test 4: Error Handling - Invalid Model **Request:** ```http POST /v1/chat/completions HTTP/1.1 Content-Type: application/json { "model": "invalid-model-id", "messages": [{"role": "user", "content": "Hello"}], "stream": false } ``` **Response:** ```http HTTP/1.1 404 Not Found Content-Type: application/json { "detail": "Model 'invalid-model-id' not found. Use 'client.models.list()' to list available Models." } ``` --- ## Test 5: Multi-Turn Conversation **Request 1:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [{"role": "user", "content": "My name is Alice"}] } ``` **Response 1:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Nice to meet you, Alice! How can I help you today?"} }] } ``` **Request 2 (with history):** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [ {"role": "user", "content": "My name is Alice"}, {"role": "assistant", "content": "...Nice to meet you, Alice!..."}, {"role": "user", "content": "What is my name?"} ] } ``` **Response 2:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Your name is Alice."} }], "usage": {"prompt_tokens": 183, "completion_tokens": 42} } ``` **Context retained across turns** --- ## Test 6: System Messages **Request:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [ {"role": "system", "content": "You are Shakespeare. Respond only in Shakespearean English."}, {"role": "user", "content": "Tell me about the weather"} ] } ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "Lo! I heed thy request..."} }], "usage": {"completion_tokens": 813} } ``` --- ## Test 7: Tool Calling **Request:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [{"role": "user", "content": "What's the weather in San Francisco?"}], "tools": [{ "type": "function", "function": { "name": "get_weather", "parameters": {"type": "object", "properties": {"location": {"type": "string"}}} } }] } ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "finish_reason": "tool_calls", "message": { "tool_calls": [{ "function": {"name": "get_weather", "arguments": "{\"location\":\"San Francisco\"}"} }] } }] } ``` --- ## Test 8: Sampling Parameters **Request:** ```http POST /v1/chat/completions HTTP/1.1 { "messages": [{"role": "user", "content": "Say hello"}], "temperature": 0.7, "top_p": 0.9 } ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Hello! 👋 How can I help you today?"} }] } ``` --- ## Test 9: Authentication Error Handling ### Subtest A: Invalid API Key **Request:** ```http POST /v1/chat/completions HTTP/1.1 x-llamastack-provider-data: {"aws_bedrock_api_key": "invalid-fake-key-12345"} {"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...} ``` **Response:** ```http HTTP/1.1 400 Bad Request { "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}" } ``` --- ### Subtest B: Empty API Key (Fallback to Config) **Request:** ```http POST /v1/chat/completions HTTP/1.1 x-llamastack-provider-data: {"aws_bedrock_api_key": ""} {"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...} ``` **Response:** ```http HTTP/1.1 200 OK { "choices": [{ "message": {"content": "...Hello! How can I assist you today?"} }] } ``` **Fell back to config key** --- ### Subtest C: Malformed Token **Request:** ```http POST /v1/chat/completions HTTP/1.1 x-llamastack-provider-data: {"aws_bedrock_api_key": "not-a-valid-bedrock-token-format"} {"model": "bedrock-inference/openai.gpt-oss-20b-1:0", ...} ``` **Response:** ```http HTTP/1.1 400 Bad Request { "detail": "Invalid value: Authentication failed: Error code: 401 - {'error': {'message': 'Invalid API Key format: Must start with pre-defined prefix', ...}}" } ```
284 lines
8.1 KiB
YAML
284 lines
8.1 KiB
YAML
version: 2
|
|
image_name: starter
|
|
apis:
|
|
- agents
|
|
- batches
|
|
- datasetio
|
|
- eval
|
|
- files
|
|
- inference
|
|
- post_training
|
|
- safety
|
|
- scoring
|
|
- tool_runtime
|
|
- vector_io
|
|
providers:
|
|
inference:
|
|
- provider_id: ${env.CEREBRAS_API_KEY:+cerebras}
|
|
provider_type: remote::cerebras
|
|
config:
|
|
base_url: https://api.cerebras.ai
|
|
api_key: ${env.CEREBRAS_API_KEY:=}
|
|
- provider_id: ${env.OLLAMA_URL:+ollama}
|
|
provider_type: remote::ollama
|
|
config:
|
|
url: ${env.OLLAMA_URL:=http://localhost:11434}
|
|
- provider_id: ${env.VLLM_URL:+vllm}
|
|
provider_type: remote::vllm
|
|
config:
|
|
url: ${env.VLLM_URL:=}
|
|
max_tokens: ${env.VLLM_MAX_TOKENS:=4096}
|
|
api_token: ${env.VLLM_API_TOKEN:=fake}
|
|
tls_verify: ${env.VLLM_TLS_VERIFY:=true}
|
|
- provider_id: ${env.TGI_URL:+tgi}
|
|
provider_type: remote::tgi
|
|
config:
|
|
url: ${env.TGI_URL:=}
|
|
- provider_id: fireworks
|
|
provider_type: remote::fireworks
|
|
config:
|
|
url: https://api.fireworks.ai/inference/v1
|
|
api_key: ${env.FIREWORKS_API_KEY:=}
|
|
- provider_id: together
|
|
provider_type: remote::together
|
|
config:
|
|
url: https://api.together.xyz/v1
|
|
api_key: ${env.TOGETHER_API_KEY:=}
|
|
- provider_id: bedrock
|
|
provider_type: remote::bedrock
|
|
config:
|
|
api_key: ${env.AWS_BEDROCK_API_KEY:=}
|
|
region_name: ${env.AWS_DEFAULT_REGION:=us-east-2}
|
|
- provider_id: ${env.NVIDIA_API_KEY:+nvidia}
|
|
provider_type: remote::nvidia
|
|
config:
|
|
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
|
api_key: ${env.NVIDIA_API_KEY:=}
|
|
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
|
- provider_id: openai
|
|
provider_type: remote::openai
|
|
config:
|
|
api_key: ${env.OPENAI_API_KEY:=}
|
|
base_url: ${env.OPENAI_BASE_URL:=https://api.openai.com/v1}
|
|
- provider_id: anthropic
|
|
provider_type: remote::anthropic
|
|
config:
|
|
api_key: ${env.ANTHROPIC_API_KEY:=}
|
|
- provider_id: gemini
|
|
provider_type: remote::gemini
|
|
config:
|
|
api_key: ${env.GEMINI_API_KEY:=}
|
|
- provider_id: ${env.VERTEX_AI_PROJECT:+vertexai}
|
|
provider_type: remote::vertexai
|
|
config:
|
|
project: ${env.VERTEX_AI_PROJECT:=}
|
|
location: ${env.VERTEX_AI_LOCATION:=us-central1}
|
|
- provider_id: groq
|
|
provider_type: remote::groq
|
|
config:
|
|
url: https://api.groq.com
|
|
api_key: ${env.GROQ_API_KEY:=}
|
|
- provider_id: sambanova
|
|
provider_type: remote::sambanova
|
|
config:
|
|
url: https://api.sambanova.ai/v1
|
|
api_key: ${env.SAMBANOVA_API_KEY:=}
|
|
- provider_id: ${env.AZURE_API_KEY:+azure}
|
|
provider_type: remote::azure
|
|
config:
|
|
api_key: ${env.AZURE_API_KEY:=}
|
|
api_base: ${env.AZURE_API_BASE:=}
|
|
api_version: ${env.AZURE_API_VERSION:=}
|
|
api_type: ${env.AZURE_API_TYPE:=}
|
|
- provider_id: sentence-transformers
|
|
provider_type: inline::sentence-transformers
|
|
vector_io:
|
|
- provider_id: faiss
|
|
provider_type: inline::faiss
|
|
config:
|
|
persistence:
|
|
namespace: vector_io::faiss
|
|
backend: kv_default
|
|
- provider_id: sqlite-vec
|
|
provider_type: inline::sqlite-vec
|
|
config:
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db
|
|
persistence:
|
|
namespace: vector_io::sqlite_vec
|
|
backend: kv_default
|
|
- provider_id: ${env.MILVUS_URL:+milvus}
|
|
provider_type: inline::milvus
|
|
config:
|
|
db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter}/milvus.db
|
|
persistence:
|
|
namespace: vector_io::milvus
|
|
backend: kv_default
|
|
- provider_id: ${env.CHROMADB_URL:+chromadb}
|
|
provider_type: remote::chromadb
|
|
config:
|
|
url: ${env.CHROMADB_URL:=}
|
|
persistence:
|
|
namespace: vector_io::chroma_remote
|
|
backend: kv_default
|
|
- provider_id: ${env.PGVECTOR_DB:+pgvector}
|
|
provider_type: remote::pgvector
|
|
config:
|
|
host: ${env.PGVECTOR_HOST:=localhost}
|
|
port: ${env.PGVECTOR_PORT:=5432}
|
|
db: ${env.PGVECTOR_DB:=}
|
|
user: ${env.PGVECTOR_USER:=}
|
|
password: ${env.PGVECTOR_PASSWORD:=}
|
|
persistence:
|
|
namespace: vector_io::pgvector
|
|
backend: kv_default
|
|
- provider_id: ${env.QDRANT_URL:+qdrant}
|
|
provider_type: remote::qdrant
|
|
config:
|
|
api_key: ${env.QDRANT_API_KEY:=}
|
|
persistence:
|
|
namespace: vector_io::qdrant_remote
|
|
backend: kv_default
|
|
- provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate}
|
|
provider_type: remote::weaviate
|
|
config:
|
|
weaviate_api_key: null
|
|
weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080}
|
|
persistence:
|
|
namespace: vector_io::weaviate
|
|
backend: kv_default
|
|
files:
|
|
- provider_id: meta-reference-files
|
|
provider_type: inline::localfs
|
|
config:
|
|
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}
|
|
metadata_store:
|
|
table_name: files_metadata
|
|
backend: sql_default
|
|
safety:
|
|
- provider_id: llama-guard
|
|
provider_type: inline::llama-guard
|
|
config:
|
|
excluded_categories: []
|
|
- provider_id: code-scanner
|
|
provider_type: inline::code-scanner
|
|
agents:
|
|
- provider_id: meta-reference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
persistence:
|
|
agent_state:
|
|
namespace: agents
|
|
backend: kv_default
|
|
responses:
|
|
table_name: responses
|
|
backend: sql_default
|
|
max_write_queue_size: 10000
|
|
num_writers: 4
|
|
post_training:
|
|
- provider_id: torchtune-cpu
|
|
provider_type: inline::torchtune-cpu
|
|
config:
|
|
checkpoint_format: meta
|
|
eval:
|
|
- provider_id: meta-reference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
kvstore:
|
|
namespace: eval
|
|
backend: kv_default
|
|
datasetio:
|
|
- provider_id: huggingface
|
|
provider_type: remote::huggingface
|
|
config:
|
|
kvstore:
|
|
namespace: datasetio::huggingface
|
|
backend: kv_default
|
|
- provider_id: localfs
|
|
provider_type: inline::localfs
|
|
config:
|
|
kvstore:
|
|
namespace: datasetio::localfs
|
|
backend: kv_default
|
|
scoring:
|
|
- provider_id: basic
|
|
provider_type: inline::basic
|
|
- provider_id: llm-as-judge
|
|
provider_type: inline::llm-as-judge
|
|
- provider_id: braintrust
|
|
provider_type: inline::braintrust
|
|
config:
|
|
openai_api_key: ${env.OPENAI_API_KEY:=}
|
|
tool_runtime:
|
|
- provider_id: brave-search
|
|
provider_type: remote::brave-search
|
|
config:
|
|
api_key: ${env.BRAVE_SEARCH_API_KEY:=}
|
|
max_results: 3
|
|
- provider_id: tavily-search
|
|
provider_type: remote::tavily-search
|
|
config:
|
|
api_key: ${env.TAVILY_SEARCH_API_KEY:=}
|
|
max_results: 3
|
|
- provider_id: rag-runtime
|
|
provider_type: inline::rag-runtime
|
|
- provider_id: model-context-protocol
|
|
provider_type: remote::model-context-protocol
|
|
batches:
|
|
- provider_id: reference
|
|
provider_type: inline::reference
|
|
config:
|
|
kvstore:
|
|
namespace: batches
|
|
backend: kv_default
|
|
storage:
|
|
backends:
|
|
kv_default:
|
|
type: kv_sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/kvstore.db
|
|
sql_default:
|
|
type: sql_sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sql_store.db
|
|
stores:
|
|
metadata:
|
|
namespace: registry
|
|
backend: kv_default
|
|
inference:
|
|
table_name: inference_store
|
|
backend: sql_default
|
|
max_write_queue_size: 10000
|
|
num_writers: 4
|
|
conversations:
|
|
table_name: openai_conversations
|
|
backend: sql_default
|
|
prompts:
|
|
namespace: prompts
|
|
backend: kv_default
|
|
registered_resources:
|
|
models: []
|
|
shields:
|
|
- shield_id: llama-guard
|
|
provider_id: ${env.SAFETY_MODEL:+llama-guard}
|
|
provider_shield_id: ${env.SAFETY_MODEL:=}
|
|
- shield_id: code-scanner
|
|
provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner}
|
|
provider_shield_id: ${env.CODE_SCANNER_MODEL:=}
|
|
vector_dbs: []
|
|
datasets: []
|
|
scoring_fns: []
|
|
benchmarks: []
|
|
tool_groups:
|
|
- toolgroup_id: builtin::websearch
|
|
provider_id: tavily-search
|
|
- toolgroup_id: builtin::rag
|
|
provider_id: rag-runtime
|
|
server:
|
|
port: 8321
|
|
telemetry:
|
|
enabled: true
|
|
vector_stores:
|
|
default_provider_id: faiss
|
|
default_embedding_model:
|
|
provider_id: sentence-transformers
|
|
model_id: nomic-ai/nomic-embed-text-v1.5
|
|
safety:
|
|
default_shield_id: llama-guard
|