mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-30 19:53:44 +00:00
This fixes the pre-commit check when running locally (not sure why this was not caught on CI check): ``` > pre-commit run --show-diff-on-failure --color=always --all-files trim trailing whitespace.................................................Passed check python ast.........................................................Passed check for merge conflicts................................................Passed check for added large files..............................................Passed fix end of files.........................................................Passed Insert license in comments...............................................Passed flake8...................................................................Failed - hook id: flake8 - exit code: 1 llama_stack/distribution/ui/page/evaluations/app_eval.py:132:65: E226 missing whitespace around arithmetic operator llama_stack/distribution/ui/page/evaluations/native_eval.py:235:61: E226 missing whitespace around arithmetic operator llama_stack/providers/utils/telemetry/trace_protocol.py:56:78: E226 missing whitespace around arithmetic operator ``` Signed-off-by: Yuan Tang <terrytangyuan@gmail.com> |
||
---|---|---|
.. | ||
modules | ||
page | ||
__init__.py | ||
app.py | ||
README.md | ||
requirements.txt |
(Experimental) LLama Stack UI
Docker Setup
⚠️ This is a work in progress.
Developer Setup
- Start up Llama Stack API server. More details here.
llama stack build --template together --image-type conda
llama stack run together
- (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
$ llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
$ llama-stack-client eval_tasks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
- Start Streamlit UI
cd llama_stack/distribution/ui
pip install -r requirements.txt
streamlit run app.py