mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-08 11:07:22 +00:00
This keeps the prompt encoding layer in our control (see `chat_completion_request_to_prompt()` method)
162 lines
5.6 KiB
Python
162 lines
5.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator
|
|
|
|
import httpx
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import Message
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from ollama import AsyncClient
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.providers.utils.inference.augment_messages import (
|
|
chat_completion_request_to_prompt,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
|
|
OLLAMA_SUPPORTED_MODELS = {
|
|
"Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
|
|
"Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
|
|
"Llama3.2-1B-Instruct": "llama3.2:1b-instruct-fp16",
|
|
"Llama3.2-3B-Instruct": "llama3.2:3b-instruct-fp16",
|
|
"Llama-Guard-3-8B": "xe/llamaguard3:latest",
|
|
}
|
|
|
|
|
|
class OllamaInferenceAdapter(Inference):
|
|
def __init__(self, url: str) -> None:
|
|
self.url = url
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
@property
|
|
def client(self) -> AsyncClient:
|
|
return AsyncClient(host=self.url)
|
|
|
|
async def initialize(self) -> None:
|
|
print("Initializing Ollama, checking connectivity to server...")
|
|
try:
|
|
await self.client.ps()
|
|
except httpx.ConnectError as e:
|
|
raise RuntimeError(
|
|
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
|
|
) from e
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: ModelDef) -> None:
|
|
if model.identifier not in OLLAMA_SUPPORTED_MODELS:
|
|
raise ValueError(
|
|
f"Unsupported model {model.identifier}. Supported models: {OLLAMA_SUPPORTED_MODELS.keys()}"
|
|
)
|
|
|
|
ollama_model = OLLAMA_SUPPORTED_MODELS[model.identifier]
|
|
res = await self.client.ps()
|
|
need_model_pull = True
|
|
for r in res["models"]:
|
|
if ollama_model == r["model"]:
|
|
need_model_pull = False
|
|
break
|
|
|
|
print(f"Ollama model `{ollama_model}` needs pull -> {need_model_pull}")
|
|
if need_model_pull:
|
|
print(f"Pulling model: {ollama_model}")
|
|
status = await self.client.pull(ollama_model)
|
|
assert (
|
|
status["status"] == "success"
|
|
), f"Failed to pull model {self.model} in ollama"
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
def chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = ChatCompletionRequest(
|
|
model=model,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return self._nonstream_chat_completion(request)
|
|
|
|
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
|
return {
|
|
"model": OLLAMA_SUPPORTED_MODELS[request.model],
|
|
"prompt": chat_completion_request_to_prompt(request, self.formatter),
|
|
"options": get_sampling_options(request),
|
|
"raw": True,
|
|
"stream": request.stream,
|
|
}
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
params = self._get_params(request)
|
|
r = await self.client.generate(**params)
|
|
assert isinstance(r, dict)
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r["done_reason"] if r["done"] else None,
|
|
text=r["response"],
|
|
)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
return process_chat_completion_response(request, response, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator:
|
|
params = self._get_params(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
s = await self.client.generate(**params)
|
|
async for chunk in s:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
|
text=chunk["response"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
request, stream, self.formatter
|
|
):
|
|
yield chunk
|