mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 13:44:38 +00:00
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 3s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 5s
API Conformance Tests / check-schema-compatibility (push) Successful in 9s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
UI Tests / ui-tests (22) (push) Successful in 38s
Pre-commit / pre-commit (push) Successful in 1m27s
# What does this PR do? Allows passing through extra_body parameters to inference providers. With this, we removed the 2 vllm-specific parameters from completions API into `extra_body`. Before/After <img width="1883" height="324" alt="image" src="https://github.com/user-attachments/assets/acb27c08-c748-46c9-b1da-0de64e9908a1" /> closes #2720 ## Test Plan CI and added new test ``` ❯ uv run pytest -s -v tests/integration/ --stack-config=server:starter --inference-mode=record -k 'not( builtin_tool or safety_with_image or code_interpreter or test_rag ) and test_openai_completion_guided_choice' --setup=vllm --suite=base --color=yes Uninstalled 3 packages in 125ms Installed 3 packages in 19ms INFO 2025-10-10 14:29:54,317 tests.integration.conftest:118 tests: Applying setup 'vllm' for suite base INFO 2025-10-10 14:29:54,331 tests.integration.conftest:47 tests: Test stack config type: server (stack_config=server:starter) ============================================================================================================== test session starts ============================================================================================================== platform darwin -- Python 3.12.11, pytest-8.4.2, pluggy-1.6.0 -- /Users/erichuang/projects/llama-stack-1/.venv/bin/python cachedir: .pytest_cache metadata: {'Python': '3.12.11', 'Platform': 'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.2', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0'}} rootdir: /Users/erichuang/projects/llama-stack-1 configfile: pyproject.toml plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0 asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function collected 285 items / 284 deselected / 1 selected tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] instantiating llama_stack_client Starting llama stack server with config 'starter' on port 8321... Waiting for server at http://localhost:8321... (0.0s elapsed) Waiting for server at http://localhost:8321... (0.5s elapsed) Waiting for server at http://localhost:8321... (5.1s elapsed) Waiting for server at http://localhost:8321... (5.6s elapsed) Waiting for server at http://localhost:8321... (10.1s elapsed) Waiting for server at http://localhost:8321... (10.6s elapsed) Server is ready at http://localhost:8321 llama_stack_client instantiated in 11.773s PASSEDTerminating llama stack server process... Terminating process 98444 and its group... Server process and children terminated gracefully ============================================================================================================= slowest 10 durations ============================================================================================================== 11.88s setup tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] 3.02s call tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] 0.01s teardown tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=vllm/Qwen/Qwen3-0.6B] ================================================================================================ 1 passed, 284 deselected, 3 warnings in 16.21s ================================================================================================= ```
158 lines
5.8 KiB
Python
158 lines
5.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
from collections.abc import AsyncIterator
|
|
|
|
from llama_stack.apis.inference import (
|
|
InferenceProvider,
|
|
OpenAIChatCompletionRequestWithExtraBody,
|
|
OpenAICompletionRequestWithExtraBody,
|
|
)
|
|
from llama_stack.apis.inference.inference import (
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAICompletion,
|
|
)
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.models.llama.llama3.chat_format import ChatFormat as Llama3ChatFormat
|
|
from llama_stack.models.llama.llama3.tokenizer import Tokenizer as Llama3Tokenizer
|
|
from llama_stack.models.llama.llama4.chat_format import ChatFormat as Llama4ChatFormat
|
|
from llama_stack.models.llama.llama4.tokenizer import Tokenizer as Llama4Tokenizer
|
|
from llama_stack.models.llama.sku_list import resolve_model
|
|
from llama_stack.models.llama.sku_types import ModelFamily
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.embedding_mixin import (
|
|
SentenceTransformerEmbeddingMixin,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
build_hf_repo_model_entry,
|
|
)
|
|
|
|
from .config import MetaReferenceInferenceConfig
|
|
from .generators import LlamaGenerator
|
|
from .model_parallel import LlamaModelParallelGenerator
|
|
|
|
log = get_logger(__name__, category="inference")
|
|
# there's a single model parallel process running serving the model. for now,
|
|
# we don't support multiple concurrent requests to this process.
|
|
SEMAPHORE = asyncio.Semaphore(1)
|
|
|
|
|
|
def llama_builder_fn(config: MetaReferenceInferenceConfig, model_id: str, llama_model: Model) -> LlamaGenerator:
|
|
return LlamaGenerator(config, model_id, llama_model)
|
|
|
|
|
|
class MetaReferenceInferenceImpl(
|
|
SentenceTransformerEmbeddingMixin,
|
|
InferenceProvider,
|
|
ModelsProtocolPrivate,
|
|
):
|
|
def __init__(self, config: MetaReferenceInferenceConfig) -> None:
|
|
self.config = config
|
|
self.model_id = None
|
|
self.llama_model = None
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
if self.config.create_distributed_process_group:
|
|
self.generator.stop()
|
|
|
|
async def openai_completion(
|
|
self,
|
|
params: OpenAICompletionRequestWithExtraBody,
|
|
) -> OpenAICompletion:
|
|
raise NotImplementedError("OpenAI completion not supported by meta reference provider")
|
|
|
|
async def should_refresh_models(self) -> bool:
|
|
return False
|
|
|
|
async def list_models(self) -> list[Model] | None:
|
|
return None
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
llama_model = (
|
|
resolve_model(model.metadata["llama_model"])
|
|
if "llama_model" in model.metadata
|
|
else resolve_model(model.identifier)
|
|
)
|
|
if llama_model is None:
|
|
raise ValueError(
|
|
"Please make sure your llama_model in model metadata or model identifier is in Llama SKU list"
|
|
)
|
|
|
|
self.model_registry_helper = ModelRegistryHelper(
|
|
[
|
|
build_hf_repo_model_entry(
|
|
llama_model.descriptor(),
|
|
llama_model.core_model_id.value,
|
|
)
|
|
],
|
|
)
|
|
model = await self.model_registry_helper.register_model(model)
|
|
|
|
if model.model_type == ModelType.embedding:
|
|
self._load_sentence_transformer_model(model.provider_resource_id)
|
|
|
|
# TODO: what is this?! you can't really specify skipping via model metadata
|
|
# kill this madness
|
|
if "skip_load" in model.metadata and model.metadata["skip_load"]:
|
|
return model
|
|
|
|
await self.load_model(model.identifier, llama_model)
|
|
return model
|
|
|
|
async def load_model(self, model_id, llama_model) -> None:
|
|
log.info(f"Loading model `{model_id}`")
|
|
|
|
builder_params = [self.config, model_id, llama_model]
|
|
|
|
if self.config.create_distributed_process_group:
|
|
self.generator = LlamaModelParallelGenerator(
|
|
model_parallel_size=self.config.model_parallel_size or llama_model.pth_file_count,
|
|
builder_fn=llama_builder_fn,
|
|
builder_params=builder_params,
|
|
formatter=(
|
|
Llama4ChatFormat(Llama4Tokenizer.get_instance())
|
|
if llama_model.model_family == ModelFamily.llama4
|
|
else Llama3ChatFormat(Llama3Tokenizer.get_instance())
|
|
),
|
|
)
|
|
self.generator.start()
|
|
else:
|
|
self.generator = llama_builder_fn(*builder_params)
|
|
|
|
self.model_id = model_id
|
|
self.llama_model = llama_model
|
|
|
|
log.info("Warming up...")
|
|
await self.openai_chat_completion(
|
|
model=model_id,
|
|
messages=[{"role": "user", "content": "Hi how are you?"}],
|
|
max_tokens=20,
|
|
)
|
|
log.info("Warmed up!")
|
|
|
|
def check_model(self, request) -> None:
|
|
if self.model_id is None or self.llama_model is None:
|
|
raise RuntimeError(
|
|
"No avaible model yet, please register your requested model or add your model in the resouces first"
|
|
)
|
|
elif request.model != self.model_id:
|
|
raise RuntimeError(f"Model mismatch: request model: {request.model} != loaded model: {self.model_id}")
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
params: OpenAIChatCompletionRequestWithExtraBody,
|
|
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
|
raise NotImplementedError("OpenAI chat completion not supported by meta-reference inference provider")
|