mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? Today, supervised_fine_tune itself and the `TrainingConfig` class have a bunch of required fields that a provider implementation might not need. for example, if a provider wants to handle hyperparameters in its configuration as well as any type of dataset retrieval, optimizer or LoRA config, a user will still need to pass in a virtually empty `DataConfig`, `OptimizerConfig` and `AlgorithmConfig` in some cases. Many of these fields are intended to work specifically with llama models and knobs intended for customizing inline. Adding remote post_training providers will require loosening these arguments, or forcing users to pass in empty objects to satisfy the pydantic models. Signed-off-by: Charlie Doern <cdoern@redhat.com> |
||
---|---|---|
.. | ||
_static | ||
notebooks | ||
openapi_generator | ||
resources | ||
source | ||
zero_to_hero_guide | ||
conftest.py | ||
contbuild.sh | ||
dog.jpg | ||
getting_started.ipynb | ||
getting_started_llama4.ipynb | ||
license_header.txt | ||
make.bat | ||
Makefile | ||
readme.md | ||
requirements.txt |
Llama Stack Documentation
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.
Render locally
pip install -r requirements.txt
cd docs
python -m sphinx_autobuild source _build
You can open up the docs in your browser at http://localhost:8000
Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:
- Building AI Applications Notebook - A comprehensive guide to building production-ready AI applications using Llama Stack
- Benchmark Evaluations Notebook - Detailed performance evaluations and benchmarking results
- Zero-to-Hero Guide - Step-by-step guide for getting started with Llama Stack