mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-11 13:44:38 +00:00
# What does this PR do? This PR adds support for Conversations in Responses. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan Unit tests Integration tests <Details> <Summary>Manual testing with this script: (click to expand)</Summary> ```python from openai import OpenAI client = OpenAI() client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none") def test_conversation_create(): print("Testing conversation create...") conversation = client.conversations.create( metadata={"topic": "demo"}, items=[ {"type": "message", "role": "user", "content": "Hello!"} ] ) print(f"Created: {conversation}") return conversation def test_conversation_retrieve(conv_id): print(f"Testing conversation retrieve for {conv_id}...") retrieved = client.conversations.retrieve(conv_id) print(f"Retrieved: {retrieved}") return retrieved def test_conversation_update(conv_id): print(f"Testing conversation update for {conv_id}...") updated = client.conversations.update( conv_id, metadata={"topic": "project-x"} ) print(f"Updated: {updated}") return updated def test_conversation_delete(conv_id): print(f"Testing conversation delete for {conv_id}...") deleted = client.conversations.delete(conv_id) print(f"Deleted: {deleted}") return deleted def test_conversation_items_create(conv_id): print(f"Testing conversation items create for {conv_id}...") items = client.conversations.items.create( conv_id, items=[ { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "Hello!"}] }, { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "How are you?"}] } ] ) print(f"Items created: {items}") return items def test_conversation_items_list(conv_id): print(f"Testing conversation items list for {conv_id}...") items = client.conversations.items.list(conv_id, limit=10) print(f"Items list: {items}") return items def test_conversation_item_retrieve(conv_id, item_id): print(f"Testing conversation item retrieve for {conv_id}/{item_id}...") item = client.conversations.items.retrieve(conversation_id=conv_id, item_id=item_id) print(f"Item retrieved: {item}") return item def test_conversation_item_delete(conv_id, item_id): print(f"Testing conversation item delete for {conv_id}/{item_id}...") deleted = client.conversations.items.delete(conversation_id=conv_id, item_id=item_id) print(f"Item deleted: {deleted}") return deleted def test_conversation_responses_create(): print("\nTesting conversation create for a responses example...") conversation = client.conversations.create() print(f"Created: {conversation}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "What are the 5 Ds of dodgeball?"}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") return response, conversation def test_conversations_responses_create_followup( conversation, content="Repeat what you just said but add 'this is my second time saying this'", ): print(f"Using: {conversation.id}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": content}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") conv_items = client.conversations.items.list(conversation.id) print(f"\nRetrieving list of items for conversation {conversation.id}:") print(conv_items.model_dump_json(indent=2)) def test_response_with_fake_conv_id(): fake_conv_id = "conv_zzzzzzzzz5dc81908289d62779d2ac510a2b0b602ef00a44" print(f"Using {fake_conv_id}") try: response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "say hello"}], conversation=fake_conv_id, ) print(f"Created response: {response} for conversation {fake_conv_id}") except Exception as e: print(f"failed to create response for conversation {fake_conv_id} with error {e}") def main(): print("Testing OpenAI Conversations API...") # Create conversation conversation = test_conversation_create() conv_id = conversation.id # Retrieve conversation test_conversation_retrieve(conv_id) # Update conversation test_conversation_update(conv_id) # Create items items = test_conversation_items_create(conv_id) # List items items_list = test_conversation_items_list(conv_id) # Retrieve specific item if items_list.data: item_id = items_list.data[0].id test_conversation_item_retrieve(conv_id, item_id) # Delete item test_conversation_item_delete(conv_id, item_id) # Delete conversation test_conversation_delete(conv_id) response, conversation2 = test_conversation_responses_create() print('\ntesting reseponse retrieval') test_conversation_retrieve(conversation2.id) print('\ntesting responses follow up') test_conversations_responses_create_followup(conversation2) print('\ntesting responses follow up x2!') test_conversations_responses_create_followup( conversation2, content="Repeat what you just said but add 'this is my third time saying this'", ) test_response_with_fake_conv_id() print("All tests completed!") if __name__ == "__main__": main() ``` </Details> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
129 lines
3.9 KiB
YAML
129 lines
3.9 KiB
YAML
version: 2
|
|
image_name: nvidia
|
|
apis:
|
|
- agents
|
|
- datasetio
|
|
- eval
|
|
- files
|
|
- inference
|
|
- post_training
|
|
- safety
|
|
- scoring
|
|
- telemetry
|
|
- tool_runtime
|
|
- vector_io
|
|
providers:
|
|
inference:
|
|
- provider_id: nvidia
|
|
provider_type: remote::nvidia
|
|
config:
|
|
url: ${env.NVIDIA_BASE_URL:=https://integrate.api.nvidia.com}
|
|
api_key: ${env.NVIDIA_API_KEY:=}
|
|
append_api_version: ${env.NVIDIA_APPEND_API_VERSION:=True}
|
|
- provider_id: nvidia
|
|
provider_type: remote::nvidia
|
|
config:
|
|
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
|
|
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
|
|
vector_io:
|
|
- provider_id: faiss
|
|
provider_type: inline::faiss
|
|
config:
|
|
kvstore:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db
|
|
safety:
|
|
- provider_id: nvidia
|
|
provider_type: remote::nvidia
|
|
config:
|
|
guardrails_service_url: ${env.GUARDRAILS_SERVICE_URL:=http://localhost:7331}
|
|
config_id: ${env.NVIDIA_GUARDRAILS_CONFIG_ID:=self-check}
|
|
agents:
|
|
- provider_id: meta-reference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
persistence_store:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db
|
|
responses_store:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db
|
|
telemetry:
|
|
- provider_id: meta-reference
|
|
provider_type: inline::meta-reference
|
|
config:
|
|
service_name: "${env.OTEL_SERVICE_NAME:=\u200B}"
|
|
sinks: ${env.TELEMETRY_SINKS:=sqlite}
|
|
sqlite_db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/trace_store.db
|
|
otel_exporter_otlp_endpoint: ${env.OTEL_EXPORTER_OTLP_ENDPOINT:=}
|
|
eval:
|
|
- provider_id: nvidia
|
|
provider_type: remote::nvidia
|
|
config:
|
|
evaluator_url: ${env.NVIDIA_EVALUATOR_URL:=http://localhost:7331}
|
|
post_training:
|
|
- provider_id: nvidia
|
|
provider_type: remote::nvidia
|
|
config:
|
|
api_key: ${env.NVIDIA_API_KEY:=}
|
|
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
|
|
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
|
|
customizer_url: ${env.NVIDIA_CUSTOMIZER_URL:=http://nemo.test}
|
|
datasetio:
|
|
- provider_id: localfs
|
|
provider_type: inline::localfs
|
|
config:
|
|
kvstore:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/localfs_datasetio.db
|
|
- provider_id: nvidia
|
|
provider_type: remote::nvidia
|
|
config:
|
|
api_key: ${env.NVIDIA_API_KEY:=}
|
|
dataset_namespace: ${env.NVIDIA_DATASET_NAMESPACE:=default}
|
|
project_id: ${env.NVIDIA_PROJECT_ID:=test-project}
|
|
datasets_url: ${env.NVIDIA_DATASETS_URL:=http://nemo.test}
|
|
scoring:
|
|
- provider_id: basic
|
|
provider_type: inline::basic
|
|
tool_runtime:
|
|
- provider_id: rag-runtime
|
|
provider_type: inline::rag-runtime
|
|
files:
|
|
- provider_id: meta-reference-files
|
|
provider_type: inline::localfs
|
|
config:
|
|
storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files}
|
|
metadata_store:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/files_metadata.db
|
|
metadata_store:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db
|
|
inference_store:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db
|
|
conversations_store:
|
|
type: sqlite
|
|
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/conversations.db
|
|
models:
|
|
- metadata: {}
|
|
model_id: ${env.INFERENCE_MODEL}
|
|
provider_id: nvidia
|
|
model_type: llm
|
|
- metadata: {}
|
|
model_id: ${env.SAFETY_MODEL}
|
|
provider_id: nvidia
|
|
model_type: llm
|
|
shields:
|
|
- shield_id: ${env.SAFETY_MODEL}
|
|
provider_id: nvidia
|
|
vector_dbs: []
|
|
datasets: []
|
|
scoring_fns: []
|
|
benchmarks: []
|
|
tool_groups:
|
|
- toolgroup_id: builtin::rag
|
|
provider_id: rag-runtime
|
|
server:
|
|
port: 8321
|