mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
76 lines
2.7 KiB
Python
76 lines
2.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, Optional
|
|
|
|
from pydantic import BaseModel, field_validator
|
|
|
|
from llama_stack.apis.inference import QuantizationConfig
|
|
|
|
from llama_stack.providers.utils.inference import supported_inference_models
|
|
|
|
|
|
class MetaReferenceInferenceConfig(BaseModel):
|
|
# this is a placeholder to indicate inference model id
|
|
# the actual inference model id is dtermined by the moddel id in the request
|
|
# Note: you need to register the model before using it for inference
|
|
# models in the resouce list in the run.yaml config will be registered automatically
|
|
model: Optional[str] = None
|
|
torch_seed: Optional[int] = None
|
|
max_seq_len: int = 4096
|
|
max_batch_size: int = 1
|
|
|
|
# when this is False, we assume that the distributed process group is setup by someone
|
|
# outside of this code (e.g., when run inside `torchrun`). that is useful for clients
|
|
# (including our testing code) who might be using llama-stack as a library.
|
|
create_distributed_process_group: bool = True
|
|
|
|
# By default, the implementation will look at ~/.llama/checkpoints/<model> but you
|
|
# can override by specifying the directory explicitly
|
|
checkpoint_dir: Optional[str] = None
|
|
|
|
@field_validator("model")
|
|
@classmethod
|
|
def validate_model(cls, model: str) -> str:
|
|
permitted_models = supported_inference_models()
|
|
descriptors = [m.descriptor() for m in permitted_models]
|
|
repos = [m.huggingface_repo for m in permitted_models]
|
|
if model not in (descriptors + repos):
|
|
model_list = "\n\t".join(repos)
|
|
raise ValueError(
|
|
f"Unknown model: `{model}`. Choose from [\n\t{model_list}\n]"
|
|
)
|
|
return model
|
|
|
|
@classmethod
|
|
def sample_run_config(
|
|
cls,
|
|
model: str = "Llama3.2-3B-Instruct",
|
|
checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}",
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
return {
|
|
"model": model,
|
|
"max_seq_len": 4096,
|
|
"checkpoint_dir": checkpoint_dir,
|
|
}
|
|
|
|
|
|
class MetaReferenceQuantizedInferenceConfig(MetaReferenceInferenceConfig):
|
|
quantization: QuantizationConfig
|
|
|
|
@classmethod
|
|
def sample_run_config(
|
|
cls,
|
|
model: str = "Llama3.2-3B-Instruct",
|
|
checkpoint_dir: str = "${env.CHECKPOINT_DIR:null}",
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
config = super().sample_run_config(model, checkpoint_dir, **kwargs)
|
|
config["quantization"] = {
|
|
"type": "fp8",
|
|
}
|
|
return config
|