mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
The semantics of an Update on resources is very tricky to reason about especially for memory banks and models. The best way to go forward here is for the user to unregister and register a new resource. We don't have a compelling reason to support update APIs. Tests: pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000 pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 $CONDA_PREFIX/bin/pytest -v -s -m "ollama" llama_stack/providers/tests/inference/test_model_registration.py --------- Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
195 lines
6.1 KiB
Python
195 lines
6.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import base64
|
|
import json
|
|
import logging
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import faiss
|
|
|
|
import numpy as np
|
|
from numpy.typing import NDArray
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.providers.datatypes import MemoryBanksProtocolPrivate
|
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
|
|
|
from llama_stack.providers.utils.memory.vector_store import (
|
|
ALL_MINILM_L6_V2_DIMENSION,
|
|
BankWithIndex,
|
|
EmbeddingIndex,
|
|
)
|
|
from llama_stack.providers.utils.telemetry import tracing
|
|
|
|
from .config import FaissImplConfig
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MEMORY_BANKS_PREFIX = "memory_banks:v1::"
|
|
|
|
|
|
class FaissIndex(EmbeddingIndex):
|
|
id_by_index: Dict[int, str]
|
|
chunk_by_index: Dict[int, str]
|
|
|
|
def __init__(self, dimension: int, kvstore=None, bank_id: str = None):
|
|
self.index = faiss.IndexFlatL2(dimension)
|
|
self.id_by_index = {}
|
|
self.chunk_by_index = {}
|
|
self.kvstore = kvstore
|
|
self.bank_id = bank_id
|
|
self.initialize()
|
|
|
|
async def initialize(self) -> None:
|
|
if not self.kvstore:
|
|
return
|
|
|
|
index_key = f"faiss_index:v1::{self.bank_id}"
|
|
stored_data = await self.kvstore.get(index_key)
|
|
|
|
if stored_data:
|
|
data = json.loads(stored_data)
|
|
self.id_by_index = {int(k): v for k, v in data["id_by_index"].items()}
|
|
self.chunk_by_index = {
|
|
int(k): Chunk.model_validate_json(v)
|
|
for k, v in data["chunk_by_index"].items()
|
|
}
|
|
|
|
index_bytes = base64.b64decode(data["faiss_index"])
|
|
self.index = faiss.deserialize_index(index_bytes)
|
|
|
|
async def _save_index(self):
|
|
if not self.kvstore or not self.bank_id:
|
|
return
|
|
|
|
index_bytes = faiss.serialize_index(self.index)
|
|
|
|
data = {
|
|
"id_by_index": self.id_by_index,
|
|
"chunk_by_index": {k: v.json() for k, v in self.chunk_by_index.items()},
|
|
"faiss_index": base64.b64encode(index_bytes).decode(),
|
|
}
|
|
|
|
index_key = f"faiss_index:v1::{self.bank_id}"
|
|
await self.kvstore.set(key=index_key, value=json.dumps(data))
|
|
|
|
async def delete(self):
|
|
if not self.kvstore or not self.bank_id:
|
|
return
|
|
|
|
await self.kvstore.delete(f"faiss_index:v1::{self.bank_id}")
|
|
|
|
@tracing.span(name="add_chunks")
|
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
|
indexlen = len(self.id_by_index)
|
|
for i, chunk in enumerate(chunks):
|
|
self.chunk_by_index[indexlen + i] = chunk
|
|
self.id_by_index[indexlen + i] = chunk.document_id
|
|
|
|
self.index.add(np.array(embeddings).astype(np.float32))
|
|
|
|
# Save updated index
|
|
await self._save_index()
|
|
|
|
async def query(
|
|
self, embedding: NDArray, k: int, score_threshold: float
|
|
) -> QueryDocumentsResponse:
|
|
distances, indices = self.index.search(
|
|
embedding.reshape(1, -1).astype(np.float32), k
|
|
)
|
|
|
|
chunks = []
|
|
scores = []
|
|
for d, i in zip(distances[0], indices[0]):
|
|
if i < 0:
|
|
continue
|
|
chunks.append(self.chunk_by_index[int(i)])
|
|
scores.append(1.0 / float(d))
|
|
|
|
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
|
|
|
|
|
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
|
|
def __init__(self, config: FaissImplConfig) -> None:
|
|
self.config = config
|
|
self.cache = {}
|
|
self.kvstore = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.kvstore = await kvstore_impl(self.config.kvstore)
|
|
# Load existing banks from kvstore
|
|
start_key = MEMORY_BANKS_PREFIX
|
|
end_key = f"{MEMORY_BANKS_PREFIX}\xff"
|
|
stored_banks = await self.kvstore.range(start_key, end_key)
|
|
|
|
for bank_data in stored_banks:
|
|
bank = VectorMemoryBank.model_validate_json(bank_data)
|
|
index = BankWithIndex(
|
|
bank=bank, index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION, self.kvstore)
|
|
)
|
|
self.cache[bank.identifier] = index
|
|
|
|
async def shutdown(self) -> None:
|
|
# Cleanup if needed
|
|
pass
|
|
|
|
async def register_memory_bank(
|
|
self,
|
|
memory_bank: MemoryBank,
|
|
) -> None:
|
|
assert (
|
|
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
|
), f"Only vector banks are supported {memory_bank.type}"
|
|
|
|
# Store in kvstore
|
|
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
|
|
await self.kvstore.set(
|
|
key=key,
|
|
value=memory_bank.json(),
|
|
)
|
|
|
|
# Store in cache
|
|
index = BankWithIndex(
|
|
bank=memory_bank,
|
|
index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION, self.kvstore),
|
|
)
|
|
self.cache[memory_bank.identifier] = index
|
|
|
|
async def list_memory_banks(self) -> List[MemoryBank]:
|
|
return [i.bank for i in self.cache.values()]
|
|
|
|
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
|
await self.cache[memory_bank_id].index.delete()
|
|
del self.cache[memory_bank_id]
|
|
await self.kvstore.delete(f"{MEMORY_BANKS_PREFIX}{memory_bank_id}")
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
index = self.cache.get(bank_id)
|
|
if index is None:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
await index.insert_documents(documents)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
index = self.cache.get(bank_id)
|
|
if index is None:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
return await index.query_documents(query, params)
|