mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
The semantics of an Update on resources is very tricky to reason about especially for memory banks and models. The best way to go forward here is for the user to unregister and register a new resource. We don't have a compelling reason to support update APIs. Tests: pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000 pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0 $CONDA_PREFIX/bin/pytest -v -s -m "ollama" llama_stack/providers/tests/inference/test_model_registration.py --------- Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
189 lines
6.7 KiB
Python
189 lines
6.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import AsyncGenerator
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import Message
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from llama_models.sku_list import all_registered_models
|
|
|
|
from openai import OpenAI
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
build_model_alias,
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
convert_message_to_dict,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import VLLMInferenceAdapterConfig
|
|
|
|
|
|
def build_model_aliases():
|
|
return [
|
|
build_model_alias(
|
|
model.huggingface_repo,
|
|
model.descriptor(),
|
|
)
|
|
for model in all_registered_models()
|
|
if model.huggingface_repo
|
|
]
|
|
|
|
|
|
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
|
self.register_helper = ModelRegistryHelper(build_model_aliases())
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
self.client = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request, self.client)
|
|
else:
|
|
return await self._nonstream_chat_completion(request, self.client)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: OpenAI
|
|
) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = client.chat.completions.create(**params)
|
|
else:
|
|
r = client.completions.create(**params)
|
|
return process_chat_completion_response(r, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: OpenAI
|
|
) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async
|
|
# generator so this wrapper is not necessary?
|
|
async def _to_async_generator():
|
|
if "messages" in params:
|
|
s = client.chat.completions.create(**params)
|
|
else:
|
|
s = client.completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
model = await self.register_helper.register_model(model)
|
|
res = self.client.models.list()
|
|
available_models = [m.id for m in res]
|
|
if model.provider_resource_id not in available_models:
|
|
raise ValueError(
|
|
f"Model {model.provider_resource_id} is not being served by vLLM. "
|
|
f"Available models: {', '.join(available_models)}"
|
|
)
|
|
return model
|
|
|
|
async def _get_params(
|
|
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
|
) -> dict:
|
|
options = get_sampling_options(request.sampling_params)
|
|
if "max_tokens" not in options:
|
|
options["max_tokens"] = self.config.max_tokens
|
|
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present:
|
|
# vllm does not seem to work well with image urls, so we download the images
|
|
input_dict["messages"] = [
|
|
await convert_message_to_dict(m, download=True)
|
|
for m in request.messages
|
|
]
|
|
else:
|
|
input_dict["prompt"] = chat_completion_request_to_prompt(
|
|
request,
|
|
self.register_helper.get_llama_model(request.model),
|
|
self.formatter,
|
|
)
|
|
else:
|
|
assert (
|
|
not media_present
|
|
), "Together does not support media for Completion requests"
|
|
input_dict["prompt"] = completion_request_to_prompt(
|
|
request,
|
|
self.register_helper.get_llama_model(request.model),
|
|
self.formatter,
|
|
)
|
|
|
|
return {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**options,
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|