llama-stack-mirror/llama_stack/templates/meta-reference-gpu/meta_reference.py
Charlie Doern 776fabed9e feat: re-work distro-codegen
each *.py file in the various templates now has to use `Provider`s rather than the stringified provider_types in the DistributionTemplate. Adjust that, regenerate all templates, docs, etc.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-07-24 18:58:55 -04:00

224 lines
7.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.apis.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
Provider,
ShieldInput,
ToolGroupInput,
)
from llama_stack.providers.inline.inference.meta_reference import (
MetaReferenceInferenceConfig,
)
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
)
],
"vector_io": [
Provider(
provider_id="faiss",
provider_type="inline::faiss",
),
Provider(
provider_id="chromadb",
provider_type="remote::chromadb",
),
Provider(
provider_id="pgvector",
provider_type="remote::pgvector",
),
],
"safety": [
Provider(
provider_id="llama-guard",
provider_type="inline::llama-guard",
)
],
"agents": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
)
],
"telemetry": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
)
],
"eval": [
Provider(
provider_id="meta-reference",
provider_type="inline::meta-reference",
)
],
"datasetio": [
Provider(
provider_id="huggingface",
provider_type="remote::huggingface",
),
Provider(
provider_id="localfs",
provider_type="inline::localfs",
),
],
"scoring": [
Provider(
provider_id="basic",
provider_type="inline::basic",
),
Provider(
provider_id="llm-as-judge",
provider_type="inline::llm-as-judge",
),
Provider(
provider_id="braintrust",
provider_type="inline::braintrust",
),
],
"tool_runtime": [
Provider(
provider_id="brave-search",
provider_type="remote::brave-search",
),
Provider(
provider_id="tavily-search",
provider_type="remote::tavily-search",
),
Provider(
provider_id="rag-runtime",
provider_type="inline::rag-runtime",
),
Provider(
provider_id="model-context-protocol",
provider_type="remote::model-context-protocol",
),
],
}
name = "meta-reference-gpu"
inference_provider = Provider(
provider_id="meta-reference-inference",
provider_type="inline::meta-reference",
config=MetaReferenceInferenceConfig.sample_run_config(
model="${env.INFERENCE_MODEL}",
checkpoint_dir="${env.INFERENCE_CHECKPOINT_DIR:=null}",
),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
vector_io_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissVectorIOConfig.sample_run_config(f"~/.llama/distributions/{name}"),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="meta-reference-inference",
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="meta-reference-safety",
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::rag",
provider_id="rag-runtime",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use Meta Reference for running LLM inference",
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"vector_io": [vector_io_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
embedding_provider,
Provider(
provider_id="meta-reference-safety",
provider_type="inline::meta-reference",
config=MetaReferenceInferenceConfig.sample_run_config(
model="${env.SAFETY_MODEL}",
checkpoint_dir="${env.SAFETY_CHECKPOINT_DIR:=null}",
),
),
],
"vector_io": [vector_io_provider],
},
default_models=[
inference_model,
safety_model,
embedding_model,
],
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMA_STACK_PORT": (
"8321",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the Meta Reference server",
),
"INFERENCE_CHECKPOINT_DIR": (
"null",
"Directory containing the Meta Reference model checkpoint",
),
"SAFETY_MODEL": (
"meta-llama/Llama-Guard-3-1B",
"Name of the safety (Llama-Guard) model to use",
),
"SAFETY_CHECKPOINT_DIR": (
"null",
"Directory containing the Llama-Guard model checkpoint",
),
},
)