llama-stack-mirror/llama_stack/providers/adapters/safety/bedrock/bedrock.py
2024-10-08 17:23:02 -07:00

116 lines
4.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import logging
from typing import Any, Dict, List
import boto3
from llama_stack.apis.safety import * # noqa
from llama_models.llama3.api.datatypes import * # noqa: F403
from .config import BedrockSafetyConfig
logger = logging.getLogger(__name__)
BEDROCK_SUPPORTED_SHIELDS = [
ShieldType.generic_content_shield.value,
]
class BedrockSafetyAdapter(Safety):
def __init__(self, config: BedrockSafetyConfig) -> None:
if not config.aws_profile:
raise ValueError(f"Missing boto_client aws_profile in model info::{config}")
self.config = config
self.registered_shields = []
async def initialize(self) -> None:
try:
print(f"initializing with profile --- > {self.config}")
self.boto_client = boto3.Session(
profile_name=self.config.aws_profile
).client("bedrock-runtime")
except Exception as e:
raise RuntimeError("Error initializing BedrockSafetyAdapter") from e
async def shutdown(self) -> None:
pass
async def register_shield(self, shield: ShieldDef) -> None:
if shield.type not in BEDROCK_SUPPORTED_SHIELDS:
raise ValueError(f"Unsupported safety shield type: {shield.type}")
shield_params = shield.params
if "guardrailIdentifier" not in shield_params:
raise ValueError(
"Error running request for BedrockGaurdrails:Missing GuardrailID in request"
)
if "guardrailVersion" not in shield_params:
raise ValueError(
"Error running request for BedrockGaurdrails:Missing guardrailVersion in request"
)
async def run_shield(
self, shield_type: str, messages: List[Message], params: Dict[str, Any] = None
) -> RunShieldResponse:
shield_def = await self.shield_store.get_shield(shield_type)
if not shield_def:
raise ValueError(f"Unknown shield {shield_type}")
"""This is the implementation for the bedrock guardrails. The input to the guardrails is to be of this format
```content = [
{
"text": {
"text": "Is the AB503 Product a better investment than the S&P 500?"
}
}
]```
However the incoming messages are of this type UserMessage(content=....) coming from
https://github.com/meta-llama/llama-models/blob/main/models/llama3/api/datatypes.py
They contain content, role . For now we will extract the content and default the "qualifiers": ["query"]
"""
shield_params = shield_def.params
logger.debug(f"run_shield::{shield_params}::messages={messages}")
# - convert the messages into format Bedrock expects
content_messages = []
for message in messages:
content_messages.append({"text": {"text": message.content}})
logger.debug(
f"run_shield::final:messages::{json.dumps(content_messages, indent=2)}:"
)
response = self.boto_client.apply_guardrail(
guardrailIdentifier=shield_params["guardrailIdentifier"],
guardrailVersion=shield_params["guardrailVersion"],
source="OUTPUT", # or 'INPUT' depending on your use case
content=content_messages,
)
if response["action"] == "GUARDRAIL_INTERVENED":
user_message = ""
metadata = {}
for output in response["outputs"]:
# guardrails returns a list - however for this implementation we will leverage the last values
user_message = output["text"]
for assessment in response["assessments"]:
# guardrails returns a list - however for this implementation we will leverage the last values
metadata = dict(assessment)
return SafetyViolation(
user_message=user_message,
violation_level=ViolationLevel.ERROR,
metadata=metadata,
)
return None