llama-stack-mirror/llama_stack/providers/impls/vllm/vllm.py
Ashwin Bharambe e45a417543 more fixes, plug shutdown handlers
still, FastAPIs sigint handler is not calling ours
2024-10-08 17:23:02 -07:00

356 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import logging
import os
import uuid
from typing import Any
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import (
CompletionMessage,
InterleavedTextMedia,
Message,
StopReason,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_models.llama3.api.tokenizer import Tokenizer
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.sampling_params import SamplingParams
from llama_stack.apis.inference import ChatCompletionRequest, Inference
from llama_stack.apis.inference.inference import (
ChatCompletionResponse,
ChatCompletionResponseEvent,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
LogProbConfig,
ToolCallDelta,
ToolCallParseStatus,
)
from llama_stack.providers.utils.inference.augment_messages import (
augment_messages_for_tools,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from .config import VLLMConfig
log = logging.getLogger(__name__)
def _random_uuid() -> str:
return str(uuid.uuid4().hex)
def _vllm_sampling_params(sampling_params: Any) -> SamplingParams:
"""Convert sampling params to vLLM sampling params."""
if sampling_params is None:
return SamplingParams()
# TODO convert what I saw in my first test ... but surely there's more to do here
kwargs = {
"temperature": sampling_params.temperature,
}
if sampling_params.top_k >= 1:
kwargs["top_k"] = sampling_params.top_k
if sampling_params.top_p:
kwargs["top_p"] = sampling_params.top_p
if sampling_params.max_tokens >= 1:
kwargs["max_tokens"] = sampling_params.max_tokens
if sampling_params.repetition_penalty > 0:
kwargs["repetition_penalty"] = sampling_params.repetition_penalty
return SamplingParams().from_optional(**kwargs)
class VLLMInferenceImpl(Inference, ModelRegistryHelper):
"""Inference implementation for vLLM."""
HF_MODEL_MAPPINGS = {
# TODO: seems like we should be able to build this table dynamically ...
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
"Llama3.2-11B-Vision": "meta-llama/Llama-3.2-11B-Vision",
"Llama3.2-90B-Vision": "meta-llama/Llama-3.2-90B-Vision",
"Llama3.2-1B-Instruct": "meta-llama/Llama-3.2-1B-Instruct",
"Llama3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
"Llama3.2-11B-Vision-Instruct": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"Llama3.2-90B-Vision-Instruct": "meta-llama/Llama-3.2-90B-Vision-Instruct",
"Llama-Guard-3-11B-Vision": "meta-llama/Llama-Guard-3-11B-Vision",
"Llama-Guard-3-1B:int4-mp1": "meta-llama/Llama-Guard-3-1B-INT4",
"Llama-Guard-3-1B": "meta-llama/Llama-Guard-3-1B",
"Llama-Guard-3-8B": "meta-llama/Llama-Guard-3-8B",
"Llama-Guard-3-8B:int8-mp1": "meta-llama/Llama-Guard-3-8B-INT8",
"Prompt-Guard-86M": "meta-llama/Prompt-Guard-86M",
"Llama-Guard-2-8B": "meta-llama/Llama-Guard-2-8B",
}
def __init__(self, config: VLLMConfig):
Inference.__init__(self)
ModelRegistryHelper.__init__(
self,
stack_to_provider_models_map=self.HF_MODEL_MAPPINGS,
)
self.config = config
self.engine = None
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
async def initialize(self):
"""Initialize the vLLM inference adapter."""
log.info("Initializing vLLM inference adapter")
# Disable usage stats reporting. This would be a surprising thing for most
# people to find out was on by default.
# https://docs.vllm.ai/en/latest/serving/usage_stats.html
if "VLLM_NO_USAGE_STATS" not in os.environ:
os.environ["VLLM_NO_USAGE_STATS"] = "1"
hf_model = self.HF_MODEL_MAPPINGS.get(self.config.model)
# TODO -- there are a ton of options supported here ...
engine_args = AsyncEngineArgs()
engine_args.model = hf_model
# We will need a new config item for this in the future if model support is more broad
# than it is today (llama only)
engine_args.tokenizer = hf_model
engine_args.tensor_parallel_size = self.config.tensor_parallel_size
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
async def shutdown(self):
"""Shutdown the vLLM inference adapter."""
log.info("Shutting down vLLM inference adapter")
if self.engine:
self.engine.shutdown_background_loop()
async def completion(
self,
model: str,
content: InterleavedTextMedia,
sampling_params: Any | None = ...,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> CompletionResponse | CompletionResponseStreamChunk:
log.info("vLLM completion")
messages = [Message(role="user", content=content)]
async for result in self.chat_completion(
model=model,
messages=messages,
sampling_params=sampling_params,
stream=stream,
logprobs=logprobs,
):
yield result
async def chat_completion(
self,
model: str,
messages: list[Message],
sampling_params: Any | None = ...,
tools: list[ToolDefinition] | None = ...,
tool_choice: ToolChoice | None = ...,
tool_prompt_format: ToolPromptFormat | None = ...,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> ChatCompletionResponse | ChatCompletionResponseStreamChunk:
log.info("vLLM chat completion")
assert self.engine is not None
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
log.info("Sampling params: %s", sampling_params)
vllm_sampling_params = _vllm_sampling_params(sampling_params)
messages = augment_messages_for_tools(request)
log.info("Augmented messages: %s", messages)
prompt = "".join([str(message.content) for message in messages])
request_id = _random_uuid()
results_generator = self.engine.generate(
prompt, vllm_sampling_params, request_id
)
if not stream:
# Non-streaming case
final_output = None
stop_reason = None
async for request_output in results_generator:
final_output = request_output
if stop_reason is None and request_output.outputs:
reason = request_output.outputs[-1].stop_reason
if reason == "stop":
stop_reason = StopReason.end_of_turn
elif reason == "length":
stop_reason = StopReason.out_of_tokens
if not stop_reason:
stop_reason = StopReason.end_of_message
if final_output:
response = "".join([output.text for output in final_output.outputs])
yield ChatCompletionResponse(
completion_message=CompletionMessage(
content=response,
stop_reason=stop_reason,
),
logprobs=None,
)
else:
# Streaming case
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
last_chunk = ""
ipython = False
stop_reason = None
async for chunk in results_generator:
if not chunk.outputs:
log.warning("Empty chunk received")
continue
if chunk.outputs[-1].stop_reason:
reason = chunk.outputs[-1].stop_reason
if stop_reason is None and reason == "stop":
stop_reason = StopReason.end_of_turn
elif stop_reason is None and reason == "length":
stop_reason = StopReason.out_of_tokens
break
text = "".join([output.text for output in chunk.outputs])
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer += text
continue
if ipython:
if text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
buffer += text
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
else:
last_chunk_len = len(last_chunk)
last_chunk = text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text[last_chunk_len:],
stop_reason=stop_reason,
)
)
if not stop_reason:
stop_reason = StopReason.end_of_message
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)
async def embeddings(
self, model: str, contents: list[InterleavedTextMedia]
) -> EmbeddingsResponse:
log.info("vLLM embeddings")
# TODO
raise NotImplementedError()