mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 10:54:19 +00:00
* fix non-streaming api in inference server * unit test for inline inference * Added non-streaming ollama inference impl * add streaming support for ollama inference with tests * addressing comments --------- Co-authored-by: Hardik Shah <hjshah@fb.com>
264 lines
9.1 KiB
Python
264 lines
9.1 KiB
Python
import httpx
|
|
import uuid
|
|
|
|
from typing import AsyncGenerator
|
|
|
|
from ollama import AsyncClient
|
|
|
|
from llama_models.llama3_1.api.datatypes import (
|
|
BuiltinTool,
|
|
CompletionMessage,
|
|
Message,
|
|
StopReason,
|
|
ToolCall,
|
|
)
|
|
from llama_models.llama3_1.api.tool_utils import ToolUtils
|
|
|
|
from .api.config import OllamaImplConfig
|
|
from .api.datatypes import (
|
|
ChatCompletionResponseEvent,
|
|
ChatCompletionResponseEventType,
|
|
ToolCallDelta,
|
|
ToolCallParseStatus,
|
|
)
|
|
from .api.endpoints import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionRequest,
|
|
Inference,
|
|
)
|
|
|
|
|
|
|
|
class OllamaInference(Inference):
|
|
|
|
def __init__(self, config: OllamaImplConfig) -> None:
|
|
self.config = config
|
|
self.model = config.model
|
|
|
|
async def initialize(self) -> None:
|
|
self.client = AsyncClient(host=self.config.url)
|
|
try:
|
|
status = await self.client.pull(self.model)
|
|
assert status['status'] == 'success', f"Failed to pull model {self.model} in ollama"
|
|
except httpx.ConnectError:
|
|
print("Ollama Server is not running, start it using `ollama serve` in a separate terminal")
|
|
raise
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
|
|
ollama_messages = []
|
|
for message in messages:
|
|
ollama_messages.append(
|
|
{"role": message.role, "content": message.content}
|
|
)
|
|
|
|
return ollama_messages
|
|
|
|
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
if not request.stream:
|
|
r = await self.client.chat(
|
|
model=self.model,
|
|
messages=self._messages_to_ollama_messages(request.messages),
|
|
stream=False,
|
|
#TODO: add support for options like temp, top_p, max_seq_length, etc
|
|
)
|
|
if r['done']:
|
|
if r['done_reason'] == 'stop':
|
|
stop_reason = StopReason.end_of_turn
|
|
elif r['done_reason'] == 'length':
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
completion_message = decode_assistant_message_from_content(
|
|
r['message']['content'],
|
|
stop_reason,
|
|
)
|
|
yield ChatCompletionResponse(
|
|
completion_message=completion_message,
|
|
logprobs=None,
|
|
)
|
|
else:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
|
|
stream = await self.client.chat(
|
|
model=self.model,
|
|
messages=self._messages_to_ollama_messages(request.messages),
|
|
stream=True
|
|
)
|
|
|
|
buffer = ""
|
|
ipython = False
|
|
stop_reason = None
|
|
|
|
async for chunk in stream:
|
|
# check if ollama is done
|
|
if chunk['done']:
|
|
if chunk['done_reason'] == 'stop':
|
|
stop_reason = StopReason.end_of_turn
|
|
elif chunk['done_reason'] == 'length':
|
|
stop_reason = StopReason.out_of_tokens
|
|
break
|
|
|
|
text = chunk['message']['content']
|
|
|
|
# check if its a tool call ( aka starts with <|python_tag|> )
|
|
if not ipython and text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
buffer = buffer[len("<|python_tag|>") :]
|
|
continue
|
|
|
|
if ipython:
|
|
if text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
continue
|
|
elif text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
continue
|
|
|
|
buffer += text
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
else:
|
|
buffer += text
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
# parse tool calls and report errors
|
|
message = decode_assistant_message_from_content(buffer, stop_reason)
|
|
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
|
|
#TODO: Consolidate this with impl in llama-models
|
|
def decode_assistant_message_from_content(
|
|
content: str,
|
|
stop_reason: StopReason,
|
|
) -> CompletionMessage:
|
|
ipython = content.startswith("<|python_tag|>")
|
|
if ipython:
|
|
content = content[len("<|python_tag|>") :]
|
|
|
|
if content.endswith("<|eot_id|>"):
|
|
content = content[: -len("<|eot_id|>")]
|
|
stop_reason = StopReason.end_of_turn
|
|
elif content.endswith("<|eom_id|>"):
|
|
content = content[: -len("<|eom_id|>")]
|
|
stop_reason = StopReason.end_of_message
|
|
|
|
tool_name = None
|
|
tool_arguments = {}
|
|
|
|
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
|
|
if custom_tool_info is not None:
|
|
tool_name, tool_arguments = custom_tool_info
|
|
# Sometimes when agent has custom tools alongside builin tools
|
|
# Agent responds for builtin tool calls in the format of the custom tools
|
|
# This code tries to handle that case
|
|
if tool_name in BuiltinTool.__members__:
|
|
tool_name = BuiltinTool[tool_name]
|
|
tool_arguments = {
|
|
"query": list(tool_arguments.values())[0],
|
|
}
|
|
else:
|
|
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
|
|
if builtin_tool_info is not None:
|
|
tool_name, query = builtin_tool_info
|
|
tool_arguments = {
|
|
"query": query,
|
|
}
|
|
if tool_name in BuiltinTool.__members__:
|
|
tool_name = BuiltinTool[tool_name]
|
|
elif ipython:
|
|
tool_name = BuiltinTool.code_interpreter
|
|
tool_arguments = {
|
|
"code": content,
|
|
}
|
|
|
|
tool_calls = []
|
|
if tool_name is not None and tool_arguments is not None:
|
|
call_id = str(uuid.uuid4())
|
|
tool_calls.append(
|
|
ToolCall(
|
|
call_id=call_id,
|
|
tool_name=tool_name,
|
|
arguments=tool_arguments,
|
|
)
|
|
)
|
|
content = ""
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
return CompletionMessage(
|
|
content=content,
|
|
stop_reason=stop_reason,
|
|
tool_calls=tool_calls,
|
|
)
|