llama-stack-mirror/llama_stack/providers/registry/scoring.py
Sébastien Han 0a50eee5a7
chore: isolate bare minimum project dependencies
The goal is to promote the minimal set of dependencies the project needs
to run, this includes:

* dependencies needed to work with the CLI
* dependencies needed for the server to run with no providers

This also:
* Relocate redundant dependencies out of the core project and into the
  individual providers that actually require them.
* Include all necessary server dependencies so the project can run
  standalone, even without any providers.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-06-23 09:42:47 +02:00

48 lines
1.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.scoring,
provider_type="inline::basic",
pip_packages=["requests"],
module="llama_stack.providers.inline.scoring.basic",
config_class="llama_stack.providers.inline.scoring.basic.BasicScoringConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
],
),
InlineProviderSpec(
api=Api.scoring,
provider_type="inline::llm-as-judge",
pip_packages=[],
module="llama_stack.providers.inline.scoring.llm_as_judge",
config_class="llama_stack.providers.inline.scoring.llm_as_judge.LlmAsJudgeScoringConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
Api.inference,
],
),
InlineProviderSpec(
api=Api.scoring,
provider_type="inline::braintrust",
pip_packages=["autoevals", "openai"],
module="llama_stack.providers.inline.scoring.braintrust",
config_class="llama_stack.providers.inline.scoring.braintrust.BraintrustScoringConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
],
provider_data_validator="llama_stack.providers.inline.scoring.braintrust.BraintrustProviderDataValidator",
),
]