llama-stack-mirror/llama_toolchain/cli/distribution/configure.py
2024-08-05 13:42:56 -07:00

116 lines
4.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import json
import shlex
from pathlib import Path
import yaml
from termcolor import cprint
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.common.config_dirs import DISTRIBS_BASE_DIR
class DistributionConfigure(Subcommand):
"""Llama cli for configuring llama toolchain configs"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"configure",
prog="llama distribution configure",
description="configure a llama stack distribution",
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_distribution_configure_cmd)
def _add_arguments(self):
from llama_toolchain.distribution.registry import available_distributions
self.parser.add_argument(
"--name",
type=str,
help="Name of the distribution to configure",
default="local-source",
choices=[d.name for d in available_distributions()],
)
def _run_distribution_configure_cmd(self, args: argparse.Namespace) -> None:
from llama_toolchain.distribution.registry import resolve_distribution
dist = resolve_distribution(args.name)
if dist is None:
self.parser.error(f"Could not find distribution {args.name}")
return
env_file = DISTRIBS_BASE_DIR / dist.name / "conda.env"
# read this file to get the conda env name
assert env_file.exists(), f"Could not find conda env file {env_file}"
with open(env_file, "r") as f:
conda_env = f.read().strip()
configure_llama_distribution(dist, conda_env)
def configure_llama_distribution(dist: "Distribution", conda_env: str):
from llama_toolchain.common.exec import run_command
from llama_toolchain.common.prompt_for_config import prompt_for_config
from llama_toolchain.common.serialize import EnumEncoder
from llama_toolchain.distribution.datatypes import RemoteProviderSpec
from llama_toolchain.distribution.dynamic import instantiate_class_type
python_exe = run_command(shlex.split("which python"))
# simple check
if conda_env not in python_exe:
raise ValueError(
f"Please re-run configure by activating the `{conda_env}` conda environment"
)
existing_config = None
config_path = Path(DISTRIBS_BASE_DIR) / dist.name / "config.yaml"
if config_path.exists():
cprint(
f"Configuration already exists for {dist.name}. Will overwrite...",
"yellow",
attrs=["bold"],
)
with open(config_path, "r") as fp:
existing_config = yaml.safe_load(fp)
provider_configs = {}
for api, provider_spec in dist.provider_specs.items():
if isinstance(provider_spec, RemoteProviderSpec):
provider_configs[api.value] = provider_spec.dict()
else:
cprint(f"Configuring API surface: {api.value}", "white", attrs=["bold"])
config_type = instantiate_class_type(provider_spec.config_class)
config = prompt_for_config(
config_type,
(
config_type(**existing_config["providers"][api.value])
if existing_config and api.value in existing_config["providers"]
else None
),
)
provider_configs[api.value] = {
"provider_id": provider_spec.provider_id,
**config.dict(),
}
dist_config = {
"providers": provider_configs,
"conda_env": conda_env,
}
with open(config_path, "w") as fp:
dist_config = json.loads(json.dumps(dist_config, cls=EnumEncoder))
fp.write(yaml.dump(dist_config, sort_keys=False))
print(f"YAML configuration has been written to {config_path}")