mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
374 lines
13 KiB
Python
374 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
"""Shared helpers for telemetry test collectors."""
|
|
|
|
import time
|
|
from collections.abc import Iterable
|
|
from dataclasses import dataclass
|
|
from typing import Any
|
|
|
|
|
|
@dataclass
|
|
class MetricStub:
|
|
"""Unified metric interface for both in-memory and OTLP collectors."""
|
|
|
|
name: str
|
|
value: Any
|
|
attributes: dict[str, Any] | None = None
|
|
|
|
|
|
@dataclass
|
|
class SpanStub:
|
|
"""Unified span interface for both in-memory and OTLP collectors."""
|
|
|
|
name: str
|
|
attributes: dict[str, Any] | None = None
|
|
resource_attributes: dict[str, Any] | None = None
|
|
events: list[dict[str, Any]] | None = None
|
|
trace_id: str | None = None
|
|
span_id: str | None = None
|
|
|
|
@property
|
|
def context(self):
|
|
"""Provide context-like interface for trace_id compatibility."""
|
|
if self.trace_id is None:
|
|
return None
|
|
return type("Context", (), {"trace_id": int(self.trace_id, 16)})()
|
|
|
|
def get_trace_id(self) -> str | None:
|
|
"""Get trace ID in hex format.
|
|
|
|
Tries context.trace_id first, then falls back to direct trace_id.
|
|
"""
|
|
context = getattr(self, "context", None)
|
|
if context and getattr(context, "trace_id", None) is not None:
|
|
return f"{context.trace_id:032x}"
|
|
return getattr(self, "trace_id", None)
|
|
|
|
def has_message(self, text: str) -> bool:
|
|
"""Check if span contains a specific message in its args."""
|
|
if self.attributes is None:
|
|
return False
|
|
args = self.attributes.get("__args__")
|
|
if not args or not isinstance(args, str):
|
|
return False
|
|
return text in args
|
|
|
|
def is_root_span(self) -> bool:
|
|
"""Check if this is a root span."""
|
|
if self.attributes is None:
|
|
return False
|
|
return self.attributes.get("__root__") is True
|
|
|
|
def is_autotraced(self) -> bool:
|
|
"""Check if this span was automatically traced."""
|
|
if self.attributes is None:
|
|
return False
|
|
return self.attributes.get("__autotraced__") is True
|
|
|
|
def get_span_type(self) -> str | None:
|
|
"""Get the span type (async, sync, async_generator)."""
|
|
if self.attributes is None:
|
|
return None
|
|
return self.attributes.get("__type__")
|
|
|
|
def get_class_method(self) -> tuple[str | None, str | None]:
|
|
"""Get the class and method names for autotraced spans."""
|
|
if self.attributes is None:
|
|
return None, None
|
|
return (self.attributes.get("__class__"), self.attributes.get("__method__"))
|
|
|
|
def get_location(self) -> str | None:
|
|
"""Get the location (library_client, server) for root spans."""
|
|
if self.attributes is None:
|
|
return None
|
|
return self.attributes.get("__location__")
|
|
|
|
|
|
def _value_to_python(value: Any) -> Any:
|
|
kind = value.WhichOneof("value")
|
|
if kind == "string_value":
|
|
return value.string_value
|
|
if kind == "int_value":
|
|
return value.int_value
|
|
if kind == "double_value":
|
|
return value.double_value
|
|
if kind == "bool_value":
|
|
return value.bool_value
|
|
if kind == "bytes_value":
|
|
return value.bytes_value
|
|
if kind == "array_value":
|
|
return [_value_to_python(item) for item in value.array_value.values]
|
|
if kind == "kvlist_value":
|
|
return {kv.key: _value_to_python(kv.value) for kv in value.kvlist_value.values}
|
|
return None
|
|
|
|
|
|
def attributes_to_dict(key_values: Iterable[Any]) -> dict[str, Any]:
|
|
return {key_value.key: _value_to_python(key_value.value) for key_value in key_values}
|
|
|
|
|
|
def events_to_list(events: Iterable[Any]) -> list[dict[str, Any]]:
|
|
return [
|
|
{
|
|
"name": event.name,
|
|
"timestamp": event.time_unix_nano,
|
|
"attributes": attributes_to_dict(event.attributes),
|
|
}
|
|
for event in events
|
|
]
|
|
|
|
|
|
class BaseTelemetryCollector:
|
|
"""Base class for telemetry collectors that ensures consistent return types.
|
|
|
|
All collectors must return SpanStub objects to ensure test compatibility
|
|
across both library-client and server modes.
|
|
"""
|
|
|
|
def get_spans(
|
|
self,
|
|
expected_count: int | None = None,
|
|
timeout: float = 5.0,
|
|
poll_interval: float = 0.05,
|
|
) -> tuple[SpanStub, ...]:
|
|
deadline = time.time() + timeout
|
|
min_count = expected_count if expected_count is not None else 1
|
|
last_len: int | None = None
|
|
stable_iterations = 0
|
|
|
|
while True:
|
|
spans = tuple(self._snapshot_spans())
|
|
|
|
if len(spans) >= min_count:
|
|
if expected_count is not None and len(spans) >= expected_count:
|
|
return spans
|
|
|
|
if last_len == len(spans):
|
|
stable_iterations += 1
|
|
if stable_iterations >= 2:
|
|
return spans
|
|
else:
|
|
stable_iterations = 1
|
|
else:
|
|
stable_iterations = 0
|
|
|
|
if time.time() >= deadline:
|
|
return spans
|
|
|
|
last_len = len(spans)
|
|
time.sleep(poll_interval)
|
|
|
|
def get_metrics(
|
|
self,
|
|
expected_count: int | None = None,
|
|
timeout: float = 5.0,
|
|
poll_interval: float = 0.05,
|
|
expect_model_id: str | None = None,
|
|
) -> dict[str, MetricStub]:
|
|
"""Get metrics with polling until metrics are available or timeout is reached."""
|
|
|
|
# metrics need to be collected since get requests delete stored metrics
|
|
deadline = time.time() + timeout
|
|
min_count = expected_count if expected_count is not None else 1
|
|
accumulated_metrics = {}
|
|
count_metrics_with_model_id = 0
|
|
|
|
while time.time() < deadline:
|
|
current_metrics = self._snapshot_metrics()
|
|
if current_metrics:
|
|
for metric in current_metrics:
|
|
metric_name = metric.name
|
|
if metric_name not in accumulated_metrics:
|
|
accumulated_metrics[metric_name] = metric
|
|
if (
|
|
expect_model_id
|
|
and metric.attributes
|
|
and metric.attributes.get("model_id") == expect_model_id
|
|
):
|
|
count_metrics_with_model_id += 1
|
|
else:
|
|
accumulated_metrics[metric_name] = metric
|
|
|
|
# Check if we have enough metrics
|
|
if len(accumulated_metrics) >= min_count:
|
|
if not expect_model_id:
|
|
return accumulated_metrics
|
|
if count_metrics_with_model_id >= min_count:
|
|
return accumulated_metrics
|
|
|
|
time.sleep(poll_interval)
|
|
|
|
return accumulated_metrics
|
|
|
|
@staticmethod
|
|
def _convert_attributes_to_dict(attrs: Any) -> dict[str, Any]:
|
|
"""Convert various attribute types to a consistent dictionary format.
|
|
|
|
Handles mappingproxy, dict, and other attribute types.
|
|
"""
|
|
if attrs is None:
|
|
return {}
|
|
|
|
try:
|
|
return dict(attrs.items()) # type: ignore[attr-defined]
|
|
except AttributeError:
|
|
try:
|
|
return dict(attrs)
|
|
except TypeError:
|
|
return dict(attrs) if attrs else {}
|
|
|
|
@staticmethod
|
|
def _extract_trace_span_ids(span: Any) -> tuple[str | None, str | None]:
|
|
"""Extract trace_id and span_id from OpenTelemetry span object.
|
|
|
|
Handles both context-based and direct attribute access.
|
|
"""
|
|
trace_id = None
|
|
span_id = None
|
|
|
|
context = getattr(span, "context", None)
|
|
if context:
|
|
trace_id = f"{context.trace_id:032x}"
|
|
span_id = f"{context.span_id:016x}"
|
|
else:
|
|
trace_id = getattr(span, "trace_id", None)
|
|
span_id = getattr(span, "span_id", None)
|
|
|
|
return trace_id, span_id
|
|
|
|
@staticmethod
|
|
def _create_span_stub_from_opentelemetry(span: Any) -> SpanStub:
|
|
"""Create SpanStub from OpenTelemetry span object.
|
|
|
|
This helper reduces code duplication between collectors.
|
|
"""
|
|
trace_id, span_id = BaseTelemetryCollector._extract_trace_span_ids(span)
|
|
attributes = BaseTelemetryCollector._convert_attributes_to_dict(span.attributes) or {}
|
|
|
|
return SpanStub(
|
|
name=span.name,
|
|
attributes=attributes,
|
|
trace_id=trace_id,
|
|
span_id=span_id,
|
|
)
|
|
|
|
@staticmethod
|
|
def _create_span_stub_from_protobuf(span: Any, resource_attrs: dict[str, Any] | None = None) -> SpanStub:
|
|
"""Create SpanStub from protobuf span object.
|
|
|
|
This helper handles the different structure of protobuf spans.
|
|
"""
|
|
attributes = attributes_to_dict(span.attributes) or {}
|
|
events = events_to_list(span.events) if span.events else None
|
|
trace_id = span.trace_id.hex() if span.trace_id else None
|
|
span_id = span.span_id.hex() if span.span_id else None
|
|
|
|
return SpanStub(
|
|
name=span.name,
|
|
attributes=attributes,
|
|
resource_attributes=resource_attrs,
|
|
events=events,
|
|
trace_id=trace_id,
|
|
span_id=span_id,
|
|
)
|
|
|
|
@staticmethod
|
|
def _extract_metric_from_opentelemetry(metric: Any) -> MetricStub | None:
|
|
"""Extract MetricStub from OpenTelemetry metric object.
|
|
|
|
This helper reduces code duplication between collectors.
|
|
"""
|
|
if not (hasattr(metric, "name") and hasattr(metric, "data") and hasattr(metric.data, "data_points")):
|
|
return None
|
|
|
|
if not (metric.data.data_points and len(metric.data.data_points) > 0):
|
|
return None
|
|
|
|
# Get the value from the first data point
|
|
data_point = metric.data.data_points[0]
|
|
|
|
# Handle different metric types
|
|
if hasattr(data_point, "value"):
|
|
# Counter or Gauge
|
|
value = data_point.value
|
|
elif hasattr(data_point, "sum"):
|
|
# Histogram - use the sum of all recorded values
|
|
value = data_point.sum
|
|
else:
|
|
return None
|
|
|
|
# Extract attributes if available
|
|
attributes = {}
|
|
if hasattr(data_point, "attributes"):
|
|
attrs = data_point.attributes
|
|
if attrs is not None and hasattr(attrs, "items"):
|
|
attributes = dict(attrs.items())
|
|
elif attrs is not None and not isinstance(attrs, dict):
|
|
attributes = dict(attrs)
|
|
|
|
return MetricStub(
|
|
name=metric.name,
|
|
value=value,
|
|
attributes=attributes or {},
|
|
)
|
|
|
|
@staticmethod
|
|
def _create_metric_stub_from_protobuf(metric: Any) -> MetricStub | None:
|
|
"""Create MetricStub from protobuf metric object.
|
|
|
|
Protobuf metrics have a different structure than OpenTelemetry metrics.
|
|
They can have sum, gauge, or histogram data.
|
|
"""
|
|
if not hasattr(metric, "name"):
|
|
return None
|
|
|
|
# Try to extract value from different metric types
|
|
for metric_type in ["sum", "gauge", "histogram"]:
|
|
if hasattr(metric, metric_type):
|
|
metric_data = getattr(metric, metric_type)
|
|
if metric_data and hasattr(metric_data, "data_points"):
|
|
data_points = metric_data.data_points
|
|
if data_points and len(data_points) > 0:
|
|
data_point = data_points[0]
|
|
|
|
# Extract attributes first (needed for all metric types)
|
|
attributes = (
|
|
attributes_to_dict(data_point.attributes) if hasattr(data_point, "attributes") else {}
|
|
)
|
|
|
|
# Extract value based on metric type
|
|
if metric_type == "sum":
|
|
value = data_point.as_int
|
|
elif metric_type == "gauge":
|
|
value = data_point.as_double
|
|
else: # histogram
|
|
value = data_point.sum
|
|
|
|
return MetricStub(
|
|
name=metric.name,
|
|
value=value,
|
|
attributes=attributes,
|
|
)
|
|
return None
|
|
|
|
def clear(self) -> None:
|
|
# prevent race conditions between tests caused by 200ms metric collection interval
|
|
time.sleep(0.3)
|
|
self._clear_impl()
|
|
|
|
def _snapshot_spans(self) -> tuple[SpanStub, ...]: # pragma: no cover - interface hook
|
|
raise NotImplementedError
|
|
|
|
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None: # pragma: no cover - interface hook
|
|
raise NotImplementedError
|
|
|
|
def _clear_impl(self) -> None: # pragma: no cover - interface hook
|
|
raise NotImplementedError
|
|
|
|
def shutdown(self) -> None:
|
|
"""Optional hook for subclasses with background workers."""
|