llama-stack-mirror/tests/integration/telemetry/collectors/base.py

374 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""Shared helpers for telemetry test collectors."""
import time
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Any
@dataclass
class MetricStub:
"""Unified metric interface for both in-memory and OTLP collectors."""
name: str
value: Any
attributes: dict[str, Any] | None = None
@dataclass
class SpanStub:
"""Unified span interface for both in-memory and OTLP collectors."""
name: str
attributes: dict[str, Any] | None = None
resource_attributes: dict[str, Any] | None = None
events: list[dict[str, Any]] | None = None
trace_id: str | None = None
span_id: str | None = None
@property
def context(self):
"""Provide context-like interface for trace_id compatibility."""
if self.trace_id is None:
return None
return type("Context", (), {"trace_id": int(self.trace_id, 16)})()
def get_trace_id(self) -> str | None:
"""Get trace ID in hex format.
Tries context.trace_id first, then falls back to direct trace_id.
"""
context = getattr(self, "context", None)
if context and getattr(context, "trace_id", None) is not None:
return f"{context.trace_id:032x}"
return getattr(self, "trace_id", None)
def has_message(self, text: str) -> bool:
"""Check if span contains a specific message in its args."""
if self.attributes is None:
return False
args = self.attributes.get("__args__")
if not args or not isinstance(args, str):
return False
return text in args
def is_root_span(self) -> bool:
"""Check if this is a root span."""
if self.attributes is None:
return False
return self.attributes.get("__root__") is True
def is_autotraced(self) -> bool:
"""Check if this span was automatically traced."""
if self.attributes is None:
return False
return self.attributes.get("__autotraced__") is True
def get_span_type(self) -> str | None:
"""Get the span type (async, sync, async_generator)."""
if self.attributes is None:
return None
return self.attributes.get("__type__")
def get_class_method(self) -> tuple[str | None, str | None]:
"""Get the class and method names for autotraced spans."""
if self.attributes is None:
return None, None
return (self.attributes.get("__class__"), self.attributes.get("__method__"))
def get_location(self) -> str | None:
"""Get the location (library_client, server) for root spans."""
if self.attributes is None:
return None
return self.attributes.get("__location__")
def _value_to_python(value: Any) -> Any:
kind = value.WhichOneof("value")
if kind == "string_value":
return value.string_value
if kind == "int_value":
return value.int_value
if kind == "double_value":
return value.double_value
if kind == "bool_value":
return value.bool_value
if kind == "bytes_value":
return value.bytes_value
if kind == "array_value":
return [_value_to_python(item) for item in value.array_value.values]
if kind == "kvlist_value":
return {kv.key: _value_to_python(kv.value) for kv in value.kvlist_value.values}
return None
def attributes_to_dict(key_values: Iterable[Any]) -> dict[str, Any]:
return {key_value.key: _value_to_python(key_value.value) for key_value in key_values}
def events_to_list(events: Iterable[Any]) -> list[dict[str, Any]]:
return [
{
"name": event.name,
"timestamp": event.time_unix_nano,
"attributes": attributes_to_dict(event.attributes),
}
for event in events
]
class BaseTelemetryCollector:
"""Base class for telemetry collectors that ensures consistent return types.
All collectors must return SpanStub objects to ensure test compatibility
across both library-client and server modes.
"""
def get_spans(
self,
expected_count: int | None = None,
timeout: float = 5.0,
poll_interval: float = 0.05,
) -> tuple[SpanStub, ...]:
deadline = time.time() + timeout
min_count = expected_count if expected_count is not None else 1
last_len: int | None = None
stable_iterations = 0
while True:
spans = tuple(self._snapshot_spans())
if len(spans) >= min_count:
if expected_count is not None and len(spans) >= expected_count:
return spans
if last_len == len(spans):
stable_iterations += 1
if stable_iterations >= 2:
return spans
else:
stable_iterations = 1
else:
stable_iterations = 0
if time.time() >= deadline:
return spans
last_len = len(spans)
time.sleep(poll_interval)
def get_metrics(
self,
expected_count: int | None = None,
timeout: float = 5.0,
poll_interval: float = 0.05,
expect_model_id: str | None = None,
) -> dict[str, MetricStub]:
"""Get metrics with polling until metrics are available or timeout is reached."""
# metrics need to be collected since get requests delete stored metrics
deadline = time.time() + timeout
min_count = expected_count if expected_count is not None else 1
accumulated_metrics = {}
count_metrics_with_model_id = 0
while time.time() < deadline:
current_metrics = self._snapshot_metrics()
if current_metrics:
for metric in current_metrics:
metric_name = metric.name
if metric_name not in accumulated_metrics:
accumulated_metrics[metric_name] = metric
if (
expect_model_id
and metric.attributes
and metric.attributes.get("model_id") == expect_model_id
):
count_metrics_with_model_id += 1
else:
accumulated_metrics[metric_name] = metric
# Check if we have enough metrics
if len(accumulated_metrics) >= min_count:
if not expect_model_id:
return accumulated_metrics
if count_metrics_with_model_id >= min_count:
return accumulated_metrics
time.sleep(poll_interval)
return accumulated_metrics
@staticmethod
def _convert_attributes_to_dict(attrs: Any) -> dict[str, Any]:
"""Convert various attribute types to a consistent dictionary format.
Handles mappingproxy, dict, and other attribute types.
"""
if attrs is None:
return {}
try:
return dict(attrs.items()) # type: ignore[attr-defined]
except AttributeError:
try:
return dict(attrs)
except TypeError:
return dict(attrs) if attrs else {}
@staticmethod
def _extract_trace_span_ids(span: Any) -> tuple[str | None, str | None]:
"""Extract trace_id and span_id from OpenTelemetry span object.
Handles both context-based and direct attribute access.
"""
trace_id = None
span_id = None
context = getattr(span, "context", None)
if context:
trace_id = f"{context.trace_id:032x}"
span_id = f"{context.span_id:016x}"
else:
trace_id = getattr(span, "trace_id", None)
span_id = getattr(span, "span_id", None)
return trace_id, span_id
@staticmethod
def _create_span_stub_from_opentelemetry(span: Any) -> SpanStub:
"""Create SpanStub from OpenTelemetry span object.
This helper reduces code duplication between collectors.
"""
trace_id, span_id = BaseTelemetryCollector._extract_trace_span_ids(span)
attributes = BaseTelemetryCollector._convert_attributes_to_dict(span.attributes) or {}
return SpanStub(
name=span.name,
attributes=attributes,
trace_id=trace_id,
span_id=span_id,
)
@staticmethod
def _create_span_stub_from_protobuf(span: Any, resource_attrs: dict[str, Any] | None = None) -> SpanStub:
"""Create SpanStub from protobuf span object.
This helper handles the different structure of protobuf spans.
"""
attributes = attributes_to_dict(span.attributes) or {}
events = events_to_list(span.events) if span.events else None
trace_id = span.trace_id.hex() if span.trace_id else None
span_id = span.span_id.hex() if span.span_id else None
return SpanStub(
name=span.name,
attributes=attributes,
resource_attributes=resource_attrs,
events=events,
trace_id=trace_id,
span_id=span_id,
)
@staticmethod
def _extract_metric_from_opentelemetry(metric: Any) -> MetricStub | None:
"""Extract MetricStub from OpenTelemetry metric object.
This helper reduces code duplication between collectors.
"""
if not (hasattr(metric, "name") and hasattr(metric, "data") and hasattr(metric.data, "data_points")):
return None
if not (metric.data.data_points and len(metric.data.data_points) > 0):
return None
# Get the value from the first data point
data_point = metric.data.data_points[0]
# Handle different metric types
if hasattr(data_point, "value"):
# Counter or Gauge
value = data_point.value
elif hasattr(data_point, "sum"):
# Histogram - use the sum of all recorded values
value = data_point.sum
else:
return None
# Extract attributes if available
attributes = {}
if hasattr(data_point, "attributes"):
attrs = data_point.attributes
if attrs is not None and hasattr(attrs, "items"):
attributes = dict(attrs.items())
elif attrs is not None and not isinstance(attrs, dict):
attributes = dict(attrs)
return MetricStub(
name=metric.name,
value=value,
attributes=attributes or {},
)
@staticmethod
def _create_metric_stub_from_protobuf(metric: Any) -> MetricStub | None:
"""Create MetricStub from protobuf metric object.
Protobuf metrics have a different structure than OpenTelemetry metrics.
They can have sum, gauge, or histogram data.
"""
if not hasattr(metric, "name"):
return None
# Try to extract value from different metric types
for metric_type in ["sum", "gauge", "histogram"]:
if hasattr(metric, metric_type):
metric_data = getattr(metric, metric_type)
if metric_data and hasattr(metric_data, "data_points"):
data_points = metric_data.data_points
if data_points and len(data_points) > 0:
data_point = data_points[0]
# Extract attributes first (needed for all metric types)
attributes = (
attributes_to_dict(data_point.attributes) if hasattr(data_point, "attributes") else {}
)
# Extract value based on metric type
if metric_type == "sum":
value = data_point.as_int
elif metric_type == "gauge":
value = data_point.as_double
else: # histogram
value = data_point.sum
return MetricStub(
name=metric.name,
value=value,
attributes=attributes,
)
return None
def clear(self) -> None:
# prevent race conditions between tests caused by 200ms metric collection interval
time.sleep(0.3)
self._clear_impl()
def _snapshot_spans(self) -> tuple[SpanStub, ...]: # pragma: no cover - interface hook
raise NotImplementedError
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None: # pragma: no cover - interface hook
raise NotImplementedError
def _clear_impl(self) -> None: # pragma: no cover - interface hook
raise NotImplementedError
def shutdown(self) -> None:
"""Optional hook for subclasses with background workers."""