llama-stack-mirror/tests/integration/telemetry/test_completions.py

146 lines
5.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""Telemetry tests verifying @trace_protocol decorator format across stack modes.
Note: The mock_otlp_collector fixture automatically clears telemetry data
before and after each test, ensuring test isolation.
"""
import json
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
"""Verify streaming adds chunk_count and __type__=async_generator."""
stream = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Test trace openai 1"}],
stream=True,
)
chunks = list(stream)
assert len(chunks) > 0
spans = mock_otlp_collector.get_spans(expected_count=5)
assert len(spans) > 0
async_generator_span = next(
(
span
for span in reversed(spans)
if span.get_span_type() == "async_generator"
and span.attributes.get("chunk_count")
and span.has_message("Test trace openai 1")
),
None,
)
assert async_generator_span is not None
raw_chunk_count = async_generator_span.attributes.get("chunk_count")
assert raw_chunk_count is not None
chunk_count = int(raw_chunk_count)
assert chunk_count == len(chunks)
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
"""Comprehensive validation of telemetry data format including spans and metrics."""
response = llama_stack_client.chat.completions.create(
model=text_model_id,
messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}],
temperature=0.7,
max_tokens=100,
stream=False,
)
# Handle both dict and Pydantic model for usage
# This occurs due to the replay system returning a dict for usage, but the client returning a Pydantic model
# TODO: Fix this by making the replay system return a Pydantic model for usage
usage = response.usage if isinstance(response.usage, dict) else response.usage.model_dump()
assert usage.get("prompt_tokens") and usage["prompt_tokens"] > 0
assert usage.get("completion_tokens") and usage["completion_tokens"] > 0
assert usage.get("total_tokens") and usage["total_tokens"] > 0
# Verify spans
spans = mock_otlp_collector.get_spans(expected_count=7)
target_span = next(
(span for span in reversed(spans) if span.has_message("Test trace openai with temperature 0.7")),
None,
)
assert target_span is not None
trace_id = target_span.get_trace_id()
assert trace_id is not None
spans = [span for span in spans if span.get_trace_id() == trace_id]
spans = [span for span in spans if span.is_root_span() or span.is_autotraced()]
assert len(spans) >= 4
# Collect all model_ids found in spans
logged_model_ids = []
for span in spans:
attrs = span.attributes
assert attrs is not None
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
if span.is_root_span():
assert span.get_location() in ["library_client", "server"]
continue
assert span.is_autotraced()
class_name, method_name = span.get_class_method()
assert class_name and method_name
assert span.get_span_type() in ["async", "sync", "async_generator"]
args_field = span.attributes.get("__args__")
if args_field:
args = json.loads(args_field)
if "model_id" in args:
logged_model_ids.append(args["model_id"])
# At least one span should capture the fully qualified model ID
assert text_model_id in logged_model_ids, f"Expected to find {text_model_id} in spans, but got {logged_model_ids}"
# Verify token usage metrics in response using polling
expected_metrics = ["completion_tokens", "total_tokens", "prompt_tokens"]
metrics = mock_otlp_collector.get_metrics(expected_count=len(expected_metrics), expect_model_id=text_model_id)
assert len(metrics) > 0, "No metrics found within timeout"
# Filter metrics to only those from the specific model used in the request
# This prevents issues when multiple metrics with the same name exist from different models
# (e.g., when safety models like llama-guard are also called)
inference_model_metrics = {}
all_model_ids = set()
for name, metric in metrics.items():
if name in expected_metrics:
model_id = metric.attributes.get("model_id")
all_model_ids.add(model_id)
# Only include metrics from the specific model used in the test request
if model_id == text_model_id:
inference_model_metrics[name] = metric
# Verify expected metrics are present for our specific model
for metric_name in expected_metrics:
assert metric_name in inference_model_metrics, (
f"Expected metric {metric_name} for model {text_model_id} not found. "
f"Available models: {sorted(all_model_ids)}, "
f"Available metrics for {text_model_id}: {list(inference_model_metrics.keys())}"
)
# Verify metric values match usage data
assert inference_model_metrics["completion_tokens"].value == usage["completion_tokens"], (
f"Expected {usage['completion_tokens']} for completion_tokens, but got {inference_model_metrics['completion_tokens'].value}"
)
assert inference_model_metrics["total_tokens"].value == usage["total_tokens"], (
f"Expected {usage['total_tokens']} for total_tokens, but got {inference_model_metrics['total_tokens'].value}"
)
assert inference_model_metrics["prompt_tokens"].value == usage["prompt_tokens"], (
f"Expected {usage['prompt_tokens']} for prompt_tokens, but got {inference_model_metrics['prompt_tokens'].value}"
)