llama-stack-mirror/llama_stack/providers/registry/inference.py
Ashwin Bharambe ade075152e
chore: kill inline::vllm (#2824)
Inline _inference_ providers haven't proved to be very useful -- they
are rarely used. And for good reason -- it is almost never a good idea
to include a complex (distributed) inference engine bundled into a
distributed stateful front-end server serving many other things.
Responsibility should be split properly.

See Discord discussion:
1395849853
2025-07-18 15:52:18 -07:00

326 lines
16 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import (
AdapterSpec,
Api,
InlineProviderSpec,
ProviderSpec,
remote_provider_spec,
)
META_REFERENCE_DEPS = [
"accelerate",
"fairscale",
"torch",
"torchvision",
"transformers",
"zmq",
"lm-format-enforcer",
"sentence-transformers",
"torchao==0.8.0",
"fbgemm-gpu-genai==1.1.2",
]
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.inference,
provider_type="inline::meta-reference",
pip_packages=META_REFERENCE_DEPS,
module="llama_stack.providers.inline.inference.meta_reference",
config_class="llama_stack.providers.inline.inference.meta_reference.MetaReferenceInferenceConfig",
description="Meta's reference implementation of inference with support for various model formats and optimization techniques.",
),
InlineProviderSpec(
api=Api.inference,
provider_type="inline::sentence-transformers",
pip_packages=[
"torch torchvision --index-url https://download.pytorch.org/whl/cpu",
"sentence-transformers --no-deps",
],
module="llama_stack.providers.inline.inference.sentence_transformers",
config_class="llama_stack.providers.inline.inference.sentence_transformers.config.SentenceTransformersInferenceConfig",
description="Sentence Transformers inference provider for text embeddings and similarity search.",
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="cerebras",
pip_packages=[
"cerebras_cloud_sdk",
],
module="llama_stack.providers.remote.inference.cerebras",
config_class="llama_stack.providers.remote.inference.cerebras.CerebrasImplConfig",
description="Cerebras inference provider for running models on Cerebras Cloud platform.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="ollama",
pip_packages=["ollama", "aiohttp", "h11>=0.16.0"],
config_class="llama_stack.providers.remote.inference.ollama.OllamaImplConfig",
module="llama_stack.providers.remote.inference.ollama",
description="Ollama inference provider for running local models through the Ollama runtime.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="vllm",
pip_packages=["openai"],
module="llama_stack.providers.remote.inference.vllm",
config_class="llama_stack.providers.remote.inference.vllm.VLLMInferenceAdapterConfig",
description="Remote vLLM inference provider for connecting to vLLM servers.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="tgi",
pip_packages=["huggingface_hub", "aiohttp"],
module="llama_stack.providers.remote.inference.tgi",
config_class="llama_stack.providers.remote.inference.tgi.TGIImplConfig",
description="Text Generation Inference (TGI) provider for HuggingFace model serving.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="hf::serverless",
pip_packages=["huggingface_hub", "aiohttp"],
module="llama_stack.providers.remote.inference.tgi",
config_class="llama_stack.providers.remote.inference.tgi.InferenceAPIImplConfig",
description="HuggingFace Inference API serverless provider for on-demand model inference.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="hf::endpoint",
pip_packages=["huggingface_hub", "aiohttp"],
module="llama_stack.providers.remote.inference.tgi",
config_class="llama_stack.providers.remote.inference.tgi.InferenceEndpointImplConfig",
description="HuggingFace Inference Endpoints provider for dedicated model serving.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="fireworks",
pip_packages=[
"fireworks-ai",
],
module="llama_stack.providers.remote.inference.fireworks",
config_class="llama_stack.providers.remote.inference.fireworks.FireworksImplConfig",
provider_data_validator="llama_stack.providers.remote.inference.fireworks.FireworksProviderDataValidator",
description="Fireworks AI inference provider for Llama models and other AI models on the Fireworks platform.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="together",
pip_packages=[
"together",
],
module="llama_stack.providers.remote.inference.together",
config_class="llama_stack.providers.remote.inference.together.TogetherImplConfig",
provider_data_validator="llama_stack.providers.remote.inference.together.TogetherProviderDataValidator",
description="Together AI inference provider for open-source models and collaborative AI development.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="bedrock",
pip_packages=["boto3"],
module="llama_stack.providers.remote.inference.bedrock",
config_class="llama_stack.providers.remote.inference.bedrock.BedrockConfig",
description="AWS Bedrock inference provider for accessing various AI models through AWS's managed service.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="databricks",
pip_packages=[
"openai",
],
module="llama_stack.providers.remote.inference.databricks",
config_class="llama_stack.providers.remote.inference.databricks.DatabricksImplConfig",
description="Databricks inference provider for running models on Databricks' unified analytics platform.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="nvidia",
pip_packages=[
"openai",
],
module="llama_stack.providers.remote.inference.nvidia",
config_class="llama_stack.providers.remote.inference.nvidia.NVIDIAConfig",
description="NVIDIA inference provider for accessing NVIDIA NIM models and AI services.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="runpod",
pip_packages=["openai"],
module="llama_stack.providers.remote.inference.runpod",
config_class="llama_stack.providers.remote.inference.runpod.RunpodImplConfig",
description="RunPod inference provider for running models on RunPod's cloud GPU platform.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="openai",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.openai",
config_class="llama_stack.providers.remote.inference.openai.OpenAIConfig",
provider_data_validator="llama_stack.providers.remote.inference.openai.config.OpenAIProviderDataValidator",
description="OpenAI inference provider for accessing GPT models and other OpenAI services.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="anthropic",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.anthropic",
config_class="llama_stack.providers.remote.inference.anthropic.AnthropicConfig",
provider_data_validator="llama_stack.providers.remote.inference.anthropic.config.AnthropicProviderDataValidator",
description="Anthropic inference provider for accessing Claude models and Anthropic's AI services.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="gemini",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.gemini",
config_class="llama_stack.providers.remote.inference.gemini.GeminiConfig",
provider_data_validator="llama_stack.providers.remote.inference.gemini.config.GeminiProviderDataValidator",
description="Google Gemini inference provider for accessing Gemini models and Google's AI services.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="groq",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.groq",
config_class="llama_stack.providers.remote.inference.groq.GroqConfig",
provider_data_validator="llama_stack.providers.remote.inference.groq.config.GroqProviderDataValidator",
description="Groq inference provider for ultra-fast inference using Groq's LPU technology.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="fireworks-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.fireworks_openai_compat",
config_class="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.fireworks_openai_compat.config.FireworksProviderDataValidator",
description="Fireworks AI OpenAI-compatible provider for using Fireworks models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="llama-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.llama_openai_compat",
config_class="llama_stack.providers.remote.inference.llama_openai_compat.config.LlamaCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.llama_openai_compat.config.LlamaProviderDataValidator",
description="Llama OpenAI-compatible provider for using Llama models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="together-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.together_openai_compat",
config_class="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.together_openai_compat.config.TogetherProviderDataValidator",
description="Together AI OpenAI-compatible provider for using Together models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="groq-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.groq_openai_compat",
config_class="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.groq_openai_compat.config.GroqProviderDataValidator",
description="Groq OpenAI-compatible provider for using Groq models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="sambanova-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.sambanova_openai_compat",
config_class="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.sambanova_openai_compat.config.SambaNovaProviderDataValidator",
description="SambaNova OpenAI-compatible provider for using SambaNova models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="cerebras-openai-compat",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.cerebras_openai_compat",
config_class="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasCompatConfig",
provider_data_validator="llama_stack.providers.remote.inference.cerebras_openai_compat.config.CerebrasProviderDataValidator",
description="Cerebras OpenAI-compatible provider for using Cerebras models with OpenAI API format.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="sambanova",
pip_packages=["litellm"],
module="llama_stack.providers.remote.inference.sambanova",
config_class="llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
provider_data_validator="llama_stack.providers.remote.inference.sambanova.config.SambaNovaProviderDataValidator",
description="SambaNova inference provider for running models on SambaNova's dataflow architecture.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="passthrough",
pip_packages=[],
module="llama_stack.providers.remote.inference.passthrough",
config_class="llama_stack.providers.remote.inference.passthrough.PassthroughImplConfig",
provider_data_validator="llama_stack.providers.remote.inference.passthrough.PassthroughProviderDataValidator",
description="Passthrough inference provider for connecting to any external inference service not directly supported.",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_type="watsonx",
pip_packages=["ibm_watson_machine_learning"],
module="llama_stack.providers.remote.inference.watsonx",
config_class="llama_stack.providers.remote.inference.watsonx.WatsonXConfig",
provider_data_validator="llama_stack.providers.remote.inference.watsonx.WatsonXProviderDataValidator",
description="IBM WatsonX inference provider for accessing AI models on IBM's WatsonX platform.",
),
),
]