llama-stack-mirror/llama_stack/providers/remote
Ashwin Bharambe 199f859eec
feat(vllm): periodically refresh models (#2823)
Just like #2805 but for vLLM.

We also make VLLM_URL env variable optional (not required) -- if not
specified, the provider silently sits idle and yells eventually if
someone tries to call a completion on it. This is done so as to allow
this provider to be present in the `starter` distribution.

## Test Plan

Set up vLLM, copy the starter template and set `{ refresh_models: true,
refresh_models_interval: 10 }` for the vllm provider and then run:

```
ENABLE_VLLM=vllm VLLM_URL=http://localhost:8000/v1 \
  uv run llama stack run --image-type venv /tmp/starter.yaml
```

Verify that `llama-stack-client models list` brings up the model
correctly from vLLM.
2025-07-18 15:53:09 -07:00
..
agents test: add unit test to ensure all config types are instantiable (#1601) 2025-03-12 22:29:58 -07:00
datasetio fix: allow default empty vars for conditionals (#2570) 2025-07-01 14:42:05 +02:00
eval refactor(env)!: enhanced environment variable substitution (#2490) 2025-06-26 08:20:08 +05:30
inference feat(vllm): periodically refresh models (#2823) 2025-07-18 15:53:09 -07:00
post_training fix: allow default empty vars for conditionals (#2570) 2025-07-01 14:42:05 +02:00
safety fix: sambanova shields and model validation (#2693) 2025-07-11 16:29:15 -04:00
tool_runtime fix: allow default empty vars for conditionals (#2570) 2025-07-01 14:42:05 +02:00
vector_io chore: Adding OpenAI Vector Stores Files API compatibility for PGVector (#2755) 2025-07-15 15:46:49 -04:00
__init__.py impls -> inline, adapters -> remote (#381) 2024-11-06 14:54:05 -08:00