mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
We desperately need to document our APIs. This is the basic requirement of having a Spec :) This PR updates the OpenAPI generator so documentation for request parameters and object fields can be properly added to the OpenAPI specs. From there, this should get picked by Stainless, etc. ## Test Plan: Updated client-sdk (See https://github.com/meta-llama/llama-stack-client-python/pull/104) and then ran: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=../../llama_stack/templates/fireworks/run.yaml pytest -s -v inference/test_inference.py agents/test_agents.py ```
431 lines
14 KiB
Python
431 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import inspect
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
from typing import Any, get_args, get_origin, Optional, TypeVar
|
|
|
|
import httpx
|
|
import yaml
|
|
from llama_stack_client import (
|
|
APIResponse,
|
|
AsyncAPIResponse,
|
|
AsyncLlamaStackClient,
|
|
AsyncStream,
|
|
LlamaStackClient,
|
|
NOT_GIVEN,
|
|
)
|
|
from pydantic import BaseModel, TypeAdapter
|
|
from rich.console import Console
|
|
from termcolor import cprint
|
|
|
|
from llama_stack.distribution.build import print_pip_install_help
|
|
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
|
|
from llama_stack.distribution.datatypes import Api
|
|
from llama_stack.distribution.request_headers import set_request_provider_data
|
|
from llama_stack.distribution.resolver import ProviderRegistry
|
|
from llama_stack.distribution.server.endpoints import get_all_api_endpoints
|
|
from llama_stack.distribution.stack import (
|
|
construct_stack,
|
|
get_stack_run_config_from_template,
|
|
redact_sensitive_fields,
|
|
replace_env_vars,
|
|
)
|
|
from llama_stack.providers.utils.telemetry.tracing import (
|
|
end_trace,
|
|
setup_logger,
|
|
start_trace,
|
|
)
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
def in_notebook():
|
|
try:
|
|
from IPython import get_ipython
|
|
|
|
if "IPKernelApp" not in get_ipython().config: # pragma: no cover
|
|
return False
|
|
except ImportError:
|
|
return False
|
|
except AttributeError:
|
|
return False
|
|
return True
|
|
|
|
|
|
def convert_pydantic_to_json_value(value: Any) -> Any:
|
|
if isinstance(value, Enum):
|
|
return value.value
|
|
elif isinstance(value, list):
|
|
return [convert_pydantic_to_json_value(item) for item in value]
|
|
elif isinstance(value, dict):
|
|
return {k: convert_pydantic_to_json_value(v) for k, v in value.items()}
|
|
elif isinstance(value, BaseModel):
|
|
return json.loads(value.model_dump_json())
|
|
else:
|
|
return value
|
|
|
|
|
|
def convert_to_pydantic(annotation: Any, value: Any) -> Any:
|
|
if isinstance(annotation, type) and annotation in {str, int, float, bool}:
|
|
return value
|
|
|
|
origin = get_origin(annotation)
|
|
if origin is list:
|
|
item_type = get_args(annotation)[0]
|
|
try:
|
|
return [convert_to_pydantic(item_type, item) for item in value]
|
|
except Exception:
|
|
print(f"Error converting list {value}")
|
|
return value
|
|
|
|
elif origin is dict:
|
|
key_type, val_type = get_args(annotation)
|
|
try:
|
|
return {k: convert_to_pydantic(val_type, v) for k, v in value.items()}
|
|
except Exception:
|
|
print(f"Error converting dict {value}")
|
|
return value
|
|
|
|
try:
|
|
# Handle Pydantic models and discriminated unions
|
|
return TypeAdapter(annotation).validate_python(value)
|
|
except Exception as e:
|
|
cprint(
|
|
f"Warning: direct client failed to convert parameter {value} into {annotation}: {e}",
|
|
"yellow",
|
|
)
|
|
return value
|
|
|
|
|
|
class LlamaStackAsLibraryClient(LlamaStackClient):
|
|
def __init__(
|
|
self,
|
|
config_path_or_template_name: str,
|
|
skip_logger_removal: bool = False,
|
|
custom_provider_registry: Optional[ProviderRegistry] = None,
|
|
provider_data: Optional[dict[str, Any]] = None,
|
|
):
|
|
super().__init__()
|
|
self.async_client = AsyncLlamaStackAsLibraryClient(
|
|
config_path_or_template_name, custom_provider_registry, provider_data
|
|
)
|
|
self.pool_executor = ThreadPoolExecutor(max_workers=4)
|
|
self.skip_logger_removal = skip_logger_removal
|
|
self.provider_data = provider_data
|
|
|
|
def initialize(self):
|
|
if in_notebook():
|
|
import nest_asyncio
|
|
|
|
nest_asyncio.apply()
|
|
if not self.skip_logger_removal:
|
|
self._remove_root_logger_handlers()
|
|
|
|
return asyncio.run(self.async_client.initialize())
|
|
|
|
def _remove_root_logger_handlers(self):
|
|
"""
|
|
Remove all handlers from the root logger. Needed to avoid polluting the console with logs.
|
|
"""
|
|
root_logger = logging.getLogger()
|
|
|
|
for handler in root_logger.handlers[:]:
|
|
root_logger.removeHandler(handler)
|
|
print(f"Removed handler {handler.__class__.__name__} from root logger")
|
|
|
|
def request(self, *args, **kwargs):
|
|
if kwargs.get("stream"):
|
|
# NOTE: We are using AsyncLlamaStackClient under the hood
|
|
# A new event loop is needed to convert the AsyncStream
|
|
# from async client into SyncStream return type for streaming
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
|
|
def sync_generator():
|
|
try:
|
|
async_stream = loop.run_until_complete(
|
|
self.async_client.request(*args, **kwargs)
|
|
)
|
|
while True:
|
|
chunk = loop.run_until_complete(async_stream.__anext__())
|
|
yield chunk
|
|
except StopAsyncIteration:
|
|
pass
|
|
finally:
|
|
loop.close()
|
|
|
|
return sync_generator()
|
|
else:
|
|
return asyncio.run(self.async_client.request(*args, **kwargs))
|
|
|
|
|
|
class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient):
|
|
def __init__(
|
|
self,
|
|
config_path_or_template_name: str,
|
|
custom_provider_registry: Optional[ProviderRegistry] = None,
|
|
provider_data: Optional[dict[str, Any]] = None,
|
|
):
|
|
super().__init__()
|
|
# when using the library client, we should not log to console since many
|
|
# of our logs are intended for server-side usage
|
|
current_sinks = os.environ.get("TELEMETRY_SINKS", "sqlite").split(",")
|
|
os.environ["TELEMETRY_SINKS"] = ",".join(
|
|
sink for sink in current_sinks if sink != "console"
|
|
)
|
|
|
|
if config_path_or_template_name.endswith(".yaml"):
|
|
config_path = Path(config_path_or_template_name)
|
|
if not config_path.exists():
|
|
raise ValueError(f"Config file {config_path} does not exist")
|
|
config_dict = replace_env_vars(yaml.safe_load(config_path.read_text()))
|
|
config = parse_and_maybe_upgrade_config(config_dict)
|
|
else:
|
|
# template
|
|
config = get_stack_run_config_from_template(config_path_or_template_name)
|
|
|
|
self.config_path_or_template_name = config_path_or_template_name
|
|
self.config = config
|
|
self.custom_provider_registry = custom_provider_registry
|
|
self.provider_data = provider_data
|
|
|
|
async def initialize(self):
|
|
try:
|
|
self.impls = await construct_stack(
|
|
self.config, self.custom_provider_registry
|
|
)
|
|
except ModuleNotFoundError as _e:
|
|
cprint(_e.msg, "red")
|
|
cprint(
|
|
"Using llama-stack as a library requires installing dependencies depending on the template (providers) you choose.\n",
|
|
"yellow",
|
|
)
|
|
if self.config_path_or_template_name.endswith(".yaml"):
|
|
print_pip_install_help(self.config.providers)
|
|
else:
|
|
prefix = "!" if in_notebook() else ""
|
|
cprint(
|
|
f"Please run:\n\n{prefix}llama stack build --template {self.config_path_or_template_name} --image-type venv\n\n",
|
|
"yellow",
|
|
)
|
|
return False
|
|
|
|
if Api.telemetry in self.impls:
|
|
setup_logger(self.impls[Api.telemetry])
|
|
|
|
console = Console()
|
|
console.print(f"Using config [blue]{self.config_path_or_template_name}[/blue]:")
|
|
|
|
# Redact sensitive information before printing
|
|
safe_config = redact_sensitive_fields(self.config.model_dump())
|
|
console.print(yaml.dump(safe_config, indent=2))
|
|
|
|
endpoints = get_all_api_endpoints()
|
|
endpoint_impls = {}
|
|
|
|
def _convert_path_to_regex(path: str) -> str:
|
|
# Convert {param} to named capture groups
|
|
pattern = re.sub(r"{(\w+)}", r"(?P<\1>[^/]+)", path)
|
|
return f"^{pattern}$"
|
|
|
|
for api, api_endpoints in endpoints.items():
|
|
if api not in self.impls:
|
|
continue
|
|
for endpoint in api_endpoints:
|
|
impl = self.impls[api]
|
|
func = getattr(impl, endpoint.name)
|
|
if endpoint.method not in endpoint_impls:
|
|
endpoint_impls[endpoint.method] = {}
|
|
endpoint_impls[endpoint.method][
|
|
_convert_path_to_regex(endpoint.route)
|
|
] = func
|
|
|
|
self.endpoint_impls = endpoint_impls
|
|
return True
|
|
|
|
async def request(
|
|
self,
|
|
cast_to: Any,
|
|
options: Any,
|
|
*,
|
|
stream=False,
|
|
stream_cls=None,
|
|
):
|
|
if not self.endpoint_impls:
|
|
raise ValueError("Client not initialized")
|
|
|
|
if self.provider_data:
|
|
set_request_provider_data(
|
|
{"X-LlamaStack-Provider-Data": json.dumps(self.provider_data)}
|
|
)
|
|
|
|
if stream:
|
|
response = await self._call_streaming(
|
|
cast_to=cast_to,
|
|
options=options,
|
|
stream_cls=stream_cls,
|
|
)
|
|
else:
|
|
response = await self._call_non_streaming(
|
|
cast_to=cast_to,
|
|
options=options,
|
|
)
|
|
return response
|
|
|
|
def _find_matching_endpoint(self, method: str, path: str) -> tuple[Any, dict]:
|
|
"""Find the matching endpoint implementation for a given method and path.
|
|
|
|
Args:
|
|
method: HTTP method (GET, POST, etc.)
|
|
path: URL path to match against
|
|
|
|
Returns:
|
|
A tuple of (endpoint_function, path_params)
|
|
|
|
Raises:
|
|
ValueError: If no matching endpoint is found
|
|
"""
|
|
impls = self.endpoint_impls.get(method)
|
|
if not impls:
|
|
raise ValueError(f"No endpoint found for {path}")
|
|
|
|
for regex, func in impls.items():
|
|
match = re.match(regex, path)
|
|
if match:
|
|
# Extract named groups from the regex match
|
|
path_params = match.groupdict()
|
|
return func, path_params
|
|
|
|
raise ValueError(f"No endpoint found for {path}")
|
|
|
|
async def _call_non_streaming(
|
|
self,
|
|
*,
|
|
cast_to: Any,
|
|
options: Any,
|
|
):
|
|
path = options.url
|
|
body = options.params or {}
|
|
body |= options.json_data or {}
|
|
|
|
matched_func, path_params = self._find_matching_endpoint(options.method, path)
|
|
body |= path_params
|
|
body = self._convert_body(path, options.method, body)
|
|
await start_trace(options.url, {"__location__": "library_client"})
|
|
try:
|
|
result = await matched_func(**body)
|
|
finally:
|
|
await end_trace()
|
|
|
|
json_content = json.dumps(convert_pydantic_to_json_value(result))
|
|
mock_response = httpx.Response(
|
|
status_code=httpx.codes.OK,
|
|
content=json_content.encode("utf-8"),
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
},
|
|
request=httpx.Request(
|
|
method=options.method,
|
|
url=options.url,
|
|
params=options.params,
|
|
headers=options.headers or {},
|
|
json=options.json_data,
|
|
),
|
|
)
|
|
response = APIResponse(
|
|
raw=mock_response,
|
|
client=self,
|
|
cast_to=cast_to,
|
|
options=options,
|
|
stream=False,
|
|
stream_cls=None,
|
|
)
|
|
return response.parse()
|
|
|
|
async def _call_streaming(
|
|
self,
|
|
*,
|
|
cast_to: Any,
|
|
options: Any,
|
|
stream_cls: Any,
|
|
):
|
|
path = options.url
|
|
body = options.params or {}
|
|
body |= options.json_data or {}
|
|
func, path_params = self._find_matching_endpoint(options.method, path)
|
|
body |= path_params
|
|
|
|
body = self._convert_body(path, options.method, body)
|
|
|
|
async def gen():
|
|
await start_trace(options.url, {"__location__": "library_client"})
|
|
try:
|
|
async for chunk in await func(**body):
|
|
data = json.dumps(convert_pydantic_to_json_value(chunk))
|
|
sse_event = f"data: {data}\n\n"
|
|
yield sse_event.encode("utf-8")
|
|
finally:
|
|
await end_trace()
|
|
|
|
mock_response = httpx.Response(
|
|
status_code=httpx.codes.OK,
|
|
content=gen(),
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
},
|
|
request=httpx.Request(
|
|
method=options.method,
|
|
url=options.url,
|
|
params=options.params,
|
|
headers=options.headers or {},
|
|
json=options.json_data,
|
|
),
|
|
)
|
|
|
|
# we use asynchronous impl always internally and channel all requests to AsyncLlamaStackClient
|
|
# however, the top-level caller may be a SyncAPIClient -- so its stream_cls might be a Stream (SyncStream)
|
|
# so we need to convert it to AsyncStream
|
|
args = get_args(stream_cls)
|
|
stream_cls = AsyncStream[args[0]]
|
|
response = AsyncAPIResponse(
|
|
raw=mock_response,
|
|
client=self,
|
|
cast_to=cast_to,
|
|
options=options,
|
|
stream=True,
|
|
stream_cls=stream_cls,
|
|
)
|
|
return await response.parse()
|
|
|
|
def _convert_body(
|
|
self, path: str, method: str, body: Optional[dict] = None
|
|
) -> dict:
|
|
if not body:
|
|
return {}
|
|
|
|
func, _ = self._find_matching_endpoint(method, path)
|
|
sig = inspect.signature(func)
|
|
|
|
# Strip NOT_GIVENs to use the defaults in signature
|
|
body = {k: v for k, v in body.items() if v is not NOT_GIVEN}
|
|
|
|
# Convert parameters to Pydantic models where needed
|
|
converted_body = {}
|
|
for param_name, param in sig.parameters.items():
|
|
if param_name in body:
|
|
value = body.get(param_name)
|
|
converted_body[param_name] = convert_to_pydantic(
|
|
param.annotation, value
|
|
)
|
|
return converted_body
|