mirror of
				https://github.com/meta-llama/llama-stack.git
				synced 2025-10-25 17:11:12 +00:00 
			
		
		
		
	# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
		
			
				
	
	
		
			437 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			437 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Meta Platforms, Inc. and affiliates.
 | |
| # All rights reserved.
 | |
| #
 | |
| # This source code is licensed under the terms described in the LICENSE file in
 | |
| # the root directory of this source tree.
 | |
| 
 | |
| import math
 | |
| from typing import Any
 | |
| 
 | |
| import fairscale.nn.model_parallel.initialize as fs_init
 | |
| import torch
 | |
| import torch.nn.functional as F
 | |
| from fairscale.nn.model_parallel.layers import (
 | |
|     ColumnParallelLinear,
 | |
|     RowParallelLinear,
 | |
|     VocabParallelEmbedding,
 | |
| )
 | |
| from torch import nn
 | |
| 
 | |
| from .args import ModelArgs
 | |
| from .datatypes import TransformerInput, TransformerOutput
 | |
| from .ffn import FeedForward
 | |
| from .moe import MoE
 | |
| 
 | |
| 
 | |
| def rmsnorm(x, eps):
 | |
|     def _norm(y):
 | |
|         return y * torch.rsqrt(y.pow(2).mean(-1, keepdim=True) + eps)
 | |
| 
 | |
|     return _norm(x.float()).type_as(x)
 | |
| 
 | |
| 
 | |
| class RMSNorm(torch.nn.Module):
 | |
|     def __init__(self, dim: int, eps: float = 1e-6):
 | |
|         super().__init__()
 | |
|         self.eps = eps
 | |
|         self.weight = nn.Parameter(torch.ones(dim))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return rmsnorm(x, self.eps) * self.weight
 | |
| 
 | |
| 
 | |
| def apply_scaling(freqs: torch.Tensor, scale_factor: float, high_freq_factor: float):
 | |
|     low_freq_factor = 1
 | |
|     old_context_len = 8192  # original llama3 length
 | |
| 
 | |
|     low_freq_wavelen = old_context_len / low_freq_factor
 | |
|     high_freq_wavelen = old_context_len / high_freq_factor
 | |
|     new_freqs = []
 | |
|     for freq in freqs:
 | |
|         wavelen = 2 * math.pi / freq
 | |
|         if wavelen < high_freq_wavelen:
 | |
|             new_freqs.append(freq)
 | |
|         elif wavelen > low_freq_wavelen:
 | |
|             new_freqs.append(freq / scale_factor)
 | |
|         else:
 | |
|             assert low_freq_wavelen != high_freq_wavelen
 | |
|             smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
 | |
|             new_freqs.append((1 - smooth) * freq / scale_factor + smooth * freq)
 | |
|     return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device)
 | |
| 
 | |
| 
 | |
| def precompute_freqs_cis(
 | |
|     dim: int,
 | |
|     end: int,
 | |
|     theta: float,
 | |
|     use_scaled: bool,
 | |
|     scale_factor: float,
 | |
|     high_freq_factor: float,
 | |
| ):
 | |
|     freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
 | |
|     t = torch.arange(end, device=freqs.device, dtype=torch.float32)
 | |
|     if use_scaled:
 | |
|         freqs = apply_scaling(freqs, scale_factor, high_freq_factor)
 | |
|     freqs = torch.outer(t, freqs)
 | |
|     freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
 | |
|     return freqs_cis
 | |
| 
 | |
| 
 | |
| def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
 | |
|     ndim = x.ndim
 | |
|     assert 0 <= 1 < ndim
 | |
|     assert freqs_cis.shape == (x.shape[1], x.shape[-1])
 | |
|     shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
 | |
|     return freqs_cis.view(*shape)
 | |
| 
 | |
| 
 | |
| def apply_rotary_emb(
 | |
|     xq: torch.Tensor,
 | |
|     xk: torch.Tensor,
 | |
|     freqs_cis: torch.Tensor,
 | |
| ) -> tuple[torch.Tensor, torch.Tensor]:
 | |
|     xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
 | |
|     xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
 | |
|     freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
 | |
|     xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
 | |
|     xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
 | |
|     return xq_out.type_as(xq), xk_out.type_as(xk)
 | |
| 
 | |
| 
 | |
| class Attention(nn.Module):
 | |
|     # TODO: this module needs to be moved into a separate file since it can be used by
 | |
|     # the vision encoder as well.
 | |
|     def __init__(
 | |
|         self,
 | |
|         args: ModelArgs,
 | |
|         use_qk_norm: bool,
 | |
|         use_rope: bool,
 | |
|         add_bias: bool = False,
 | |
|     ):
 | |
|         super().__init__()
 | |
|         self.use_rope = use_rope
 | |
|         self.use_qk_norm = use_qk_norm
 | |
|         # For attention temperature tuning
 | |
|         self.attn_temperature_tuning = args.attn_temperature_tuning
 | |
|         self.floor_scale = args.floor_scale
 | |
|         self.attn_scale = args.attn_scale
 | |
| 
 | |
|         self.n_heads = args.n_heads
 | |
|         self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
 | |
|         world_size = fs_init.get_model_parallel_world_size()
 | |
|         self.n_local_heads = args.n_heads // world_size
 | |
|         self.n_local_kv_heads = self.n_kv_heads // world_size
 | |
|         self.n_rep = self.n_local_heads // self.n_local_kv_heads
 | |
|         self.head_dim = args.dim // args.n_heads
 | |
| 
 | |
|         self.wq = ColumnParallelLinear(
 | |
|             args.dim,
 | |
|             args.n_heads * self.head_dim,
 | |
|             bias=add_bias,
 | |
|             gather_output=False,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
|         self.wk = ColumnParallelLinear(
 | |
|             args.dim,
 | |
|             self.n_kv_heads * self.head_dim,
 | |
|             bias=add_bias,
 | |
|             gather_output=False,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
|         self.wv = ColumnParallelLinear(
 | |
|             args.dim,
 | |
|             self.n_kv_heads * self.head_dim,
 | |
|             bias=add_bias,
 | |
|             gather_output=False,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
|         self.wo = RowParallelLinear(
 | |
|             args.n_heads * self.head_dim,
 | |
|             args.dim,
 | |
|             bias=add_bias,
 | |
|             input_is_parallel=True,
 | |
|             init_method=lambda x: x,
 | |
|         )
 | |
| 
 | |
|         self.cache_k = torch.zeros(
 | |
|             (
 | |
|                 args.max_batch_size,
 | |
|                 args.max_seq_len,
 | |
|                 self.n_local_kv_heads,
 | |
|                 self.head_dim,
 | |
|             )
 | |
|         ).cuda()
 | |
|         self.cache_v = torch.zeros(
 | |
|             (
 | |
|                 args.max_batch_size,
 | |
|                 args.max_seq_len,
 | |
|                 self.n_local_kv_heads,
 | |
|                 self.head_dim,
 | |
|             )
 | |
|         ).cuda()
 | |
|         self.norm_eps = args.norm_eps
 | |
|         self._register_load_state_dict_pre_hook(self.load_hook)
 | |
| 
 | |
|     def load_hook(
 | |
|         self,
 | |
|         state_dict: dict[str, Any],
 | |
|         prefix: str,
 | |
|         local_metadata: dict[str, Any],
 | |
|         strict: bool,
 | |
|         missing_keys: list[str],
 | |
|         unexpected_keys: list[str],
 | |
|         error_msgs: list[str],
 | |
|     ) -> None:
 | |
|         if prefix + "wqkv.weight" in state_dict:
 | |
|             wqkv = state_dict.pop(prefix + "wqkv.weight")
 | |
|             d, r = divmod(wqkv.shape[0], self.n_heads + 2 * self.n_kv_heads)
 | |
|             if r != 0:
 | |
|                 raise ValueError(
 | |
|                     f"shape={tuple(wqkv.shape)} is not divisible by "
 | |
|                     f"n_heads ({self.n_heads}) + 2 * n_kv_heads ({self.n_kv_heads})"
 | |
|                 )
 | |
|             wq, wk, wv = wqkv.split([d * self.n_heads, d * self.n_kv_heads, d * self.n_kv_heads], dim=0)
 | |
|             state_dict[prefix + "wq.weight"] = wq
 | |
|             state_dict[prefix + "wk.weight"] = wk
 | |
|             state_dict[prefix + "wv.weight"] = wv
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         x: torch.Tensor,
 | |
|         start_pos: int,
 | |
|         freqs_cis: torch.Tensor,
 | |
|         mask: torch.Tensor | None = None,
 | |
|     ):
 | |
|         bsz, seqlen, _ = x.shape
 | |
|         xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
 | |
| 
 | |
|         xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
 | |
|         xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
 | |
|         xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
 | |
| 
 | |
|         if self.use_rope:
 | |
|             xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
 | |
| 
 | |
|         if self.use_qk_norm:
 | |
|             xq = rmsnorm(xq, self.norm_eps)
 | |
|             xk = rmsnorm(xk, self.norm_eps)
 | |
| 
 | |
|         # We are applying temperature tuning (https://arxiv.org/abs/2501.19399) to NoPE layers, where
 | |
|         # the inference-time temperature tuning function is customized to not affect short context
 | |
|         # while working at very long context
 | |
|         if self.attn_temperature_tuning and not self.use_rope:
 | |
|             seq_positions = torch.arange(start_pos, start_pos + seqlen, device=xq.device, dtype=torch.float32)
 | |
|             attn_scales = torch.log(torch.floor((seq_positions + 1.0) / self.floor_scale) + 1.0) * self.attn_scale + 1.0
 | |
| 
 | |
|             # reshape for broadcasting [seqlen] -> [1, seqlen, 1, 1]
 | |
|             attn_scales = attn_scales.view(1, seqlen, 1, 1)
 | |
|             xq = xq * attn_scales
 | |
| 
 | |
|         self.cache_k = self.cache_k.to(xq)
 | |
|         self.cache_v = self.cache_v.to(xq)
 | |
| 
 | |
|         self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
 | |
|         self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
 | |
| 
 | |
|         xk = self.cache_k[:bsz, : start_pos + seqlen]
 | |
|         xv = self.cache_v[:bsz, : start_pos + seqlen]
 | |
| 
 | |
|         xq, xk, xv = [t.transpose(1, 2) for t in (xq, xk, xv)]
 | |
| 
 | |
|         xk = xk.repeat_interleave(self.n_rep, dim=1)
 | |
|         xv = xv.repeat_interleave(self.n_rep, dim=1)
 | |
| 
 | |
|         attn_output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=mask, dropout_p=0.0)
 | |
|         attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
 | |
|         output = self.wo(attn_output)
 | |
|         return output
 | |
| 
 | |
| 
 | |
| class TransformerBlock(nn.Module):
 | |
|     def __init__(self, layer_id: int, args: ModelArgs):
 | |
|         super().__init__()
 | |
|         self.n_heads = args.n_heads
 | |
|         self.dim = args.dim
 | |
|         self.head_dim = args.dim // args.n_heads if args.head_dim is None else args.head_dim
 | |
| 
 | |
|         self.is_nope_layer = args.nope_layer_interval is not None and (layer_id + 1) % args.nope_layer_interval == 0
 | |
| 
 | |
|         use_rope = not self.is_nope_layer
 | |
|         use_qk_norm = args.use_qk_norm and not self.is_nope_layer
 | |
| 
 | |
|         self.attention = Attention(args, use_rope=use_rope, use_qk_norm=use_qk_norm)
 | |
| 
 | |
|         if args.moe_args and (layer_id + 1) % args.moe_args.interleave_moe_layer_step == 0:
 | |
|             self.feed_forward = MoE(
 | |
|                 dim=args.dim,
 | |
|                 hidden_dim=int(args.ffn_exp * args.dim),
 | |
|                 ffn_dim_multiplier=args.ffn_dim_multiplier,
 | |
|                 multiple_of=args.multiple_of,
 | |
|                 moe_args=args.moe_args,
 | |
|             )
 | |
|         else:
 | |
|             hidden_dim = int(4 * args.dim)
 | |
|             hidden_dim = int(2 * hidden_dim / 3)
 | |
|             if args.ffn_dim_multiplier is not None:
 | |
|                 hidden_dim = int(args.ffn_dim_multiplier * hidden_dim)
 | |
|             hidden_dim = args.multiple_of * ((hidden_dim + args.multiple_of - 1) // args.multiple_of)
 | |
| 
 | |
|             self.feed_forward = FeedForward(
 | |
|                 dim=args.dim,
 | |
|                 hidden_dim=hidden_dim,
 | |
|             )
 | |
|         self.layer_id = layer_id
 | |
|         self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
 | |
|         self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
 | |
| 
 | |
|         self._register_load_state_dict_pre_hook(self.load_hook)
 | |
| 
 | |
|     def load_hook(
 | |
|         self,
 | |
|         state_dict: dict[str, Any],
 | |
|         prefix: str,
 | |
|         local_metadata: dict[str, Any],
 | |
|         strict: bool,
 | |
|         missing_keys: list[str],
 | |
|         unexpected_keys: list[str],
 | |
|         error_msgs: list[str],
 | |
|     ) -> None:
 | |
|         if prefix + "attention.wqkv.layer_norm_weight" in state_dict:
 | |
|             state_dict[prefix + "attention_norm.weight"] = state_dict.pop(prefix + "attention.wqkv.layer_norm_weight")
 | |
| 
 | |
|         if prefix + "feed_forward.mlp.layer_norm_weight" in state_dict:
 | |
|             state_dict[prefix + "ffn_norm.weight"] = state_dict.pop(prefix + "feed_forward.mlp.layer_norm_weight")
 | |
|         elif prefix + "feed_forward.norm.weight" in state_dict:
 | |
|             state_dict[prefix + "ffn_norm.weight"] = state_dict.pop(prefix + "feed_forward.norm.weight")
 | |
| 
 | |
|         for k in (
 | |
|             "feed_forward.experts.mlp",
 | |
|             "feed_forward.mlp_shared",
 | |
|             "attention.wo",
 | |
|             "attention.wqkv",
 | |
|         ):
 | |
|             if prefix + k + "._extra_state" in state_dict:
 | |
|                 state_dict.pop(prefix + k + "._extra_state")
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         x: torch.Tensor,
 | |
|         start_pos: int,
 | |
|         freqs_cis: torch.Tensor,
 | |
|         global_attn_mask: torch.Tensor | None,
 | |
|         local_attn_mask: torch.Tensor | None,
 | |
|     ):
 | |
|         # The iRoPE architecture uses global attention mask for NoPE layers or
 | |
|         # if chunked local attention is not used
 | |
|         if self.is_nope_layer or local_attn_mask is None:
 | |
|             mask = global_attn_mask
 | |
|         else:
 | |
|             mask = local_attn_mask
 | |
| 
 | |
|         h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
 | |
|         out = h + self.feed_forward(self.ffn_norm(h))
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Transformer(nn.Module):
 | |
|     def __init__(self, args: ModelArgs, **kwargs) -> None:
 | |
|         super().__init__()
 | |
|         self.args = args
 | |
| 
 | |
|         self.vocab_size = args.vocab_size
 | |
|         self.n_layers = args.n_layers
 | |
| 
 | |
|         self.tok_embeddings = VocabParallelEmbedding(args.vocab_size, args.dim, init_method=lambda x: x)
 | |
| 
 | |
|         self.layers = torch.nn.ModuleList()
 | |
|         for layer_id in range(args.n_layers):
 | |
|             self.layers.append(TransformerBlock(layer_id, args))
 | |
| 
 | |
|         self.norm = RMSNorm(args.dim, eps=args.norm_eps)
 | |
|         self.output = ColumnParallelLinear(args.dim, args.vocab_size, bias=False, init_method=lambda x: x)
 | |
| 
 | |
|         self.freqs_cis = precompute_freqs_cis(
 | |
|             args.dim // args.n_heads,
 | |
|             args.max_seq_len * 2,
 | |
|             args.rope_theta,
 | |
|             args.use_scaled_rope,
 | |
|             args.rope_scaling_factor,
 | |
|             args.rope_high_freq_factor,
 | |
|         )
 | |
|         vision_args = self.args.vision_args
 | |
|         if vision_args:
 | |
|             # circular import otherwise until we refactor out Attention
 | |
|             from .vision.embedding import VisionEmbeddings
 | |
| 
 | |
|             self.vision_embeddings = VisionEmbeddings(vision_args)
 | |
|             self.vision_projection = ColumnParallelLinear(
 | |
|                 vision_args.output_dim,
 | |
|                 args.dim,
 | |
|                 bias=False,
 | |
|                 init_method=lambda x: x,
 | |
|             )
 | |
|         self._register_load_state_dict_pre_hook(self.load_hook)
 | |
| 
 | |
|     def load_hook(
 | |
|         self,
 | |
|         state_dict: dict[str, Any],
 | |
|         prefix: str,
 | |
|         local_metadata: dict[str, Any],
 | |
|         strict: bool,
 | |
|         missing_keys: list[str],
 | |
|         unexpected_keys: list[str],
 | |
|         error_msgs: list[str],
 | |
|     ) -> None:
 | |
|         if prefix + "rope.freqs" in state_dict:
 | |
|             state_dict.pop(prefix + "rope.freqs")
 | |
| 
 | |
|     @torch.inference_mode()
 | |
|     def forward(self, model_input: TransformerInput) -> TransformerOutput:
 | |
|         tokens = model_input.tokens
 | |
|         start_pos = model_input.tokens_position
 | |
|         assert isinstance(start_pos, int), (
 | |
|             "This implementation does not support different start positions per batch item"
 | |
|         )
 | |
| 
 | |
|         _bsz, seqlen = tokens.shape
 | |
|         h = self.tok_embeddings(tokens)
 | |
| 
 | |
|         if image_embedding := model_input.image_embedding:
 | |
|             h_image = self.vision_projection(image_embedding.embedding)
 | |
|             h = h * ~image_embedding.mask + h_image * image_embedding.mask
 | |
| 
 | |
|         self.freqs_cis = self.freqs_cis.to(h.device)
 | |
|         freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
 | |
| 
 | |
|         global_attn_mask, local_attn_mask = None, None
 | |
|         if seqlen > 1:
 | |
|             global_attn_mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device)
 | |
|             global_attn_mask = torch.triu(global_attn_mask, diagonal=1).type_as(h)
 | |
| 
 | |
|             # https://github.com/pytorch/pytorch/issues/100005
 | |
|             # torch.triu is buggy when the device is mps: filled values are
 | |
|             # nan instead of 0.
 | |
|             if global_attn_mask.device.type == torch.device("mps").type:
 | |
|                 global_attn_mask = torch.nan_to_num(global_attn_mask, nan=0.0)
 | |
| 
 | |
|             if chunk_size := self.args.attention_chunk_size:
 | |
|                 local_attn_mask = create_chunked_attention_mask(seqlen, chunk_size, tokens.device)
 | |
| 
 | |
|         for layer in self.layers:
 | |
|             h = layer(h, start_pos, freqs_cis, global_attn_mask, local_attn_mask)
 | |
|         h = self.norm(h)
 | |
|         output = self.output(h).float()
 | |
| 
 | |
|         return TransformerOutput(logits=output)
 | |
| 
 | |
| 
 | |
| # tokens (0, K), (K, 2K), (2K, 3K) attend to each other when doing local chunked attention
 | |
| # in the iRoPE architecture
 | |
| def create_chunked_attention_mask(seq_len: int, attention_chunk_size: int, device: torch.device) -> torch.Tensor:
 | |
|     block_pos = torch.abs(
 | |
|         (torch.arange(seq_len).unsqueeze(0) // attention_chunk_size)
 | |
|         - (torch.arange(seq_len).unsqueeze(1) // attention_chunk_size)
 | |
|     )
 | |
|     token_pos = torch.arange(seq_len).unsqueeze(0) - torch.arange(seq_len).unsqueeze(1)
 | |
|     mask = (block_pos == 0) & (token_pos <= 0)
 | |
|     return mask.to(device)
 |