llama-stack-mirror/tests
Cesare Pompeiano 0dbf79c328
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 4s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 4s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 9s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 9s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 1s
Vector IO Integration Tests / test-matrix (push) Failing after 9s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
API Conformance Tests / check-schema-compatibility (push) Successful in 13s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 4s
Unit Tests / unit-tests (3.12) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 5s
Test Llama Stack Build / build (push) Failing after 31s
UI Tests / ui-tests (22) (push) Successful in 46s
Pre-commit / pre-commit (push) Successful in 2m13s
fix: Fixed WatsonX remote inference provider (#3801)
# What does this PR do?
This PR fixes issues with the WatsonX provider so it works correctly
with LiteLLM.

The main problem was that WatsonX requests failed because the provider
data validator didn’t properly handle the API key and project ID. This
was fixed by updating the WatsonXProviderDataValidator and ensuring the
provider data is loaded correctly.

The openai_chat_completion method was also updated to match the behavior
of other providers while adding WatsonX-specific fields like project_id.
It still calls await super().openai_chat_completion.__func__(self,
params) to keep the existing setup and tracing logic.

After these changes, WatsonX requests now run correctly.

## Test Plan
The changes were tested by running chat completion requests and
confirming that credentials and project parameters are passed correctly.
I have tested with my WatsonX credentials, by using the cli with `uv run
llama-stack-client inference chat-completion --session`

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Sébastien Han <seb@redhat.com>
2025-10-14 14:52:32 +02:00
..
common feat(tests): make inference_recorder into api_recorder (include tool_invoke) (#3403) 2025-10-09 14:27:51 -07:00
containers feat(ci): add support for running vision inference tests (#2972) 2025-07-31 11:50:42 -07:00
external feat: introduce API leveling, post_training, eval to v1alpha (#3449) 2025-09-26 16:18:07 +02:00
integration fix: Fixed WatsonX remote inference provider (#3801) 2025-10-14 14:52:32 +02:00
unit fix: replace python-jose with PyJWT for JWT handling (#3756) 2025-10-14 09:35:48 +02:00
__init__.py refactor(test): introduce --stack-config and simplify options (#1404) 2025-03-05 17:02:02 -08:00
README.md feat(tests): introduce a test "suite" concept to encompass dirs, options (#3339) 2025-09-05 13:58:49 -07:00

There are two obvious types of tests:

Type Location Purpose
Unit tests/unit/ Fast, isolated component testing
Integration tests/integration/ End-to-end workflows with record-replay

Both have their place. For unit tests, it is important to create minimal mocks and instead rely more on "fakes". Mocks are too brittle. In either case, tests must be very fast and reliable.

Record-replay for integration tests

Testing AI applications end-to-end creates some challenges:

  • API costs accumulate quickly during development and CI
  • Non-deterministic responses make tests unreliable
  • Multiple providers require testing the same logic across different APIs

Our solution: Record real API responses once, replay them for fast, deterministic tests. This is better than mocking because AI APIs have complex response structures and streaming behavior. Mocks can miss edge cases that real APIs exhibit. A single test can exercise underlying APIs in multiple complex ways making it really hard to mock.

This gives you:

  • Cost control - No repeated API calls during development
  • Speed - Instant test execution with cached responses
  • Reliability - Consistent results regardless of external service state
  • Provider coverage - Same tests work across OpenAI, Anthropic, local models, etc.

Testing Quick Start

You can run the unit tests with:

uv run --group unit pytest -sv tests/unit/

For running integration tests, you must provide a few things:

  • A stack config. This is a pointer to a stack. You have a few ways to point to a stack:

    • server:<config> - automatically start a server with the given config (e.g., server:starter). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:starter:8322)
    • a URL which points to a Llama Stack distribution server
    • a distribution name (e.g., starter) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • Any API keys you need to use should be set in the environment, or can be passed in with the --env option.

You can run the integration tests in replay mode with:

# Run all tests with existing recordings
  uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter

Re-recording tests

Local Re-recording (Manual Setup Required)

If you want to re-record tests locally, you can do so with:

LLAMA_STACK_TEST_INFERENCE_MODE=record \
  uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter -k "<appropriate test name>"

This will record new API responses and overwrite the existing recordings.


You must be careful when re-recording. CI workflows assume a specific setup for running the replay-mode tests. You must re-record the tests in the same way as the CI workflows. This means
- you need Ollama running and serving some specific models.
- you are using the `starter` distribution.

For easier re-recording without local setup, use the automated recording workflow:

# Record tests for specific test subdirectories
./scripts/github/schedule-record-workflow.sh --test-subdirs "agents,inference"

# Record with vision tests enabled
./scripts/github/schedule-record-workflow.sh --test-suite vision

# Record with specific provider
./scripts/github/schedule-record-workflow.sh --test-subdirs "agents" --test-provider vllm

This script:

  • 🚀 Runs in GitHub Actions - no local Ollama setup required
  • 🔍 Auto-detects your branch and associated PR
  • 🍴 Works from forks - handles repository context automatically
  • Commits recordings back to your branch

Prerequisites:

  • GitHub CLI: brew install gh && gh auth login
  • jq: brew install jq
  • Your branch pushed to a remote

Supported providers: vllm, ollama

Next Steps