llama-stack-mirror/llama_stack/providers/inline/eval/meta_reference/eval.py
Ihar Hrachyshka 0f50cfa561 feat(api): define a more coherent jobs api across different flows
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-04-15 12:36:05 -04:00

257 lines
10 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
from typing import Any, Dict, List
from tqdm import tqdm
from llama_stack.apis.agents import Agents, StepType
from llama_stack.apis.benchmarks import Benchmark
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.inference import Inference, SystemMessage, UserMessage
from llama_stack.apis.scoring import Scoring
from llama_stack.providers.datatypes import BenchmarksProtocolPrivate
from llama_stack.providers.inline.agents.meta_reference.agent_instance import (
MEMORY_QUERY_TOOL,
)
from llama_stack.providers.utils.common.data_schema_validator import ColumnName
from llama_stack.providers.utils.kvstore import kvstore_impl
from llama_stack.schema_utils import webmethod
from .....apis.common.job_types import JobArtifact, JobStatus
from .....apis.eval.eval import BenchmarkConfig, Eval, EvaluateJob, ListEvaluateJobsResponse
from .config import MetaReferenceEvalConfig
EVAL_TASKS_PREFIX = "benchmarks:"
class MetaReferenceEvalImpl(
Eval,
BenchmarksProtocolPrivate,
):
def __init__(
self,
config: MetaReferenceEvalConfig,
datasetio_api: DatasetIO,
datasets_api: Datasets,
scoring_api: Scoring,
inference_api: Inference,
agents_api: Agents,
) -> None:
self.config = config
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
self.scoring_api = scoring_api
self.inference_api = inference_api
self.agents_api = agents_api
# TODO: assume sync job, will need jobs API for async scheduling
self.jobs = {}
self.benchmarks = {}
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing benchmarks from kvstore
start_key = EVAL_TASKS_PREFIX
end_key = f"{EVAL_TASKS_PREFIX}\xff"
stored_benchmarks = await self.kvstore.range(start_key, end_key)
for benchmark in stored_benchmarks:
benchmark = Benchmark.model_validate_json(benchmark)
self.benchmarks[benchmark.identifier] = benchmark
async def shutdown(self) -> None: ...
async def register_benchmark(self, task_def: Benchmark) -> None:
# Store in kvstore
key = f"{EVAL_TASKS_PREFIX}{task_def.identifier}"
await self.kvstore.set(
key=key,
value=task_def.model_dump_json(),
)
self.benchmarks[task_def.identifier] = task_def
async def evaluate(
self,
benchmark_id: str,
benchmark_config: BenchmarkConfig,
) -> EvaluateJob:
task_def = self.benchmarks[benchmark_id]
dataset_id = task_def.dataset_id
scoring_functions = task_def.scoring_functions
# TODO (xiyan): validate dataset schema
# dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
limit=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
)
generations, scoring_results = await self._evaluate_rows(
benchmark_id=benchmark_id,
input_rows=all_rows.data,
scoring_functions=scoring_functions,
benchmark_config=benchmark_config,
)
artifacts = [
JobArtifact(
type="generation",
name=f"generation-{i}",
metadata=generation,
)
for i, generation in enumerate(generations)
] + [
JobArtifact(
type="scoring_results",
name="scoring_results",
metadata=scoring_results,
)
]
# TODO: currently needs to wait for generation before returning
# need job scheduler queue (ray/celery) w/ jobs api
job_id = str(len(self.jobs))
job = EvaluateJob(id=job_id, artifacts=artifacts)
job.update_status(JobStatus.completed)
self.jobs[job_id] = job
return job
async def _run_agent_generation(
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
) -> List[Dict[str, Any]]:
candidate = benchmark_config.eval_candidate
create_response = await self.agents_api.create_agent(candidate.config)
agent_id = create_response.agent_id
generations = []
for i, x in tqdm(enumerate(input_rows)):
assert ColumnName.chat_completion_input.value in x, "Invalid input row"
input_messages = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = [UserMessage(**x) for x in input_messages if x["role"] == "user"]
# NOTE: only single-turn agent generation is supported. Create a new session for each input row
session_create_response = await self.agents_api.create_agent_session(agent_id, f"session-{i}")
session_id = session_create_response.session_id
turn_request = dict(
agent_id=agent_id,
session_id=session_id,
messages=input_messages,
stream=True,
)
turn_response = [chunk async for chunk in await self.agents_api.create_agent_turn(**turn_request)]
final_event = turn_response[-1].event.payload
# check if there's a memory retrieval step and extract the context
memory_rag_context = None
for step in final_event.turn.steps:
if step.step_type == StepType.tool_execution.value:
for tool_response in step.tool_responses:
if tool_response.tool_name == MEMORY_QUERY_TOOL:
memory_rag_context = " ".join(x.text for x in tool_response.content)
agent_generation = {}
agent_generation[ColumnName.generated_answer.value] = final_event.turn.output_message.content
if memory_rag_context:
agent_generation[ColumnName.context.value] = memory_rag_context
generations.append(agent_generation)
return generations
async def _run_model_generation(
self, input_rows: List[Dict[str, Any]], benchmark_config: BenchmarkConfig
) -> List[Dict[str, Any]]:
candidate = benchmark_config.eval_candidate
assert candidate.sampling_params.max_tokens is not None, "SamplingParams.max_tokens must be provided"
generations = []
for x in tqdm(input_rows):
if ColumnName.completion_input.value in x:
input_content = json.loads(x[ColumnName.completion_input.value])
response = await self.inference_api.completion(
model=candidate.model,
content=input_content,
sampling_params=candidate.sampling_params,
)
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
elif ColumnName.chat_completion_input.value in x:
chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = [UserMessage(**x) for x in chat_completion_input_json if x["role"] == "user"]
messages = []
if candidate.system_message:
messages.append(candidate.system_message)
messages += [SystemMessage(**x) for x in chat_completion_input_json if x["role"] == "system"]
messages += input_messages
response = await self.inference_api.chat_completion(
model_id=candidate.model,
messages=messages,
sampling_params=candidate.sampling_params,
)
generations.append({ColumnName.generated_answer.value: response.completion_message.content})
else:
raise ValueError("Invalid input row")
return generations
async def _evaluate_rows(
self,
benchmark_id: str,
input_rows: List[Dict[str, Any]],
scoring_functions: List[str],
benchmark_config: BenchmarkConfig,
) -> tuple[list[dict[str, Any]], dict[str, Any]]:
candidate = benchmark_config.eval_candidate
if candidate.type == "agent":
generations = await self._run_agent_generation(input_rows, benchmark_config)
elif candidate.type == "model":
generations = await self._run_model_generation(input_rows, benchmark_config)
else:
raise ValueError(f"Invalid candidate type: {candidate.type}")
# scoring with generated_answer
score_input_rows = [
input_r | generated_r for input_r, generated_r in zip(input_rows, generations, strict=False)
]
if benchmark_config.scoring_params is not None:
scoring_functions_dict = {
scoring_fn_id: benchmark_config.scoring_params.get(scoring_fn_id, None)
for scoring_fn_id in scoring_functions
}
else:
scoring_functions_dict = {scoring_fn_id: None for scoring_fn_id in scoring_functions}
score_response = await self.scoring_api.score(
input_rows=score_input_rows, scoring_functions=scoring_functions_dict
)
return generations, score_response.results
# CRUD operations on running jobs
@webmethod(route="/evaluate/jobs/{job_id:path}", method="GET")
async def get_evaluate_job(self, job_id: str) -> EvaluateJob:
return self.jobs[job_id]
@webmethod(route="/evaluate/jobs", method="GET")
async def list_evaluate_jobs(self) -> ListEvaluateJobsResponse:
return ListEvaluateJobsResponse(data=list(self.jobs.values()))
@webmethod(route="/evaluate/jobs/{job_id:path}", method="POST")
async def update_evaluate_job(self, job: EvaluateJob) -> EvaluateJob:
raise NotImplementedError
@webmethod(route="/evaluate/job/{job_id:path}", method="DELETE")
async def delete_evaluate_job(self, job_id: str) -> None:
raise NotImplementedError
# Note: pause/resume/cancel are achieved as follows:
# - POST with status=paused
# - POST with status=resuming
# - POST with status=cancelled