mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 20:14:13 +00:00
# What does this PR do? add ModelsProtocolPrivate methods to OpenAIMixin this will allow providers using OpenAIMixin to use a common interface ## Test Plan ci w/ new tests
427 lines
16 KiB
Python
427 lines
16 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import base64
|
|
import uuid
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import AsyncIterator
|
|
from typing import Any
|
|
|
|
from openai import NOT_GIVEN, AsyncOpenAI
|
|
|
|
from llama_stack.apis.inference import (
|
|
Model,
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAICompletion,
|
|
OpenAIEmbeddingData,
|
|
OpenAIEmbeddingsResponse,
|
|
OpenAIEmbeddingUsage,
|
|
OpenAIMessageParam,
|
|
OpenAIResponseFormatParam,
|
|
)
|
|
from llama_stack.apis.models import ModelType
|
|
from llama_stack.core.request_headers import NeedsRequestProviderData
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
|
from llama_stack.providers.utils.inference.prompt_adapter import localize_image_content
|
|
|
|
logger = get_logger(name=__name__, category="providers::utils")
|
|
|
|
|
|
class OpenAIMixin(ModelsProtocolPrivate, NeedsRequestProviderData, ABC):
|
|
"""
|
|
Mixin class that provides OpenAI-specific functionality for inference providers.
|
|
This class handles direct OpenAI API calls using the AsyncOpenAI client.
|
|
|
|
This is an abstract base class that requires child classes to implement:
|
|
- get_api_key(): Method to retrieve the API key
|
|
- get_base_url(): Method to retrieve the OpenAI-compatible API base URL
|
|
|
|
Expected Dependencies:
|
|
- self.model_store: Injected by the Llama Stack distribution system at runtime.
|
|
This provides model registry functionality for looking up registered models.
|
|
The model_store is set in routing_tables/common.py during provider initialization.
|
|
"""
|
|
|
|
# Allow subclasses to control whether to overwrite the 'id' field in OpenAI responses
|
|
# is overwritten with a client-side generated id.
|
|
#
|
|
# This is useful for providers that do not return a unique id in the response.
|
|
overwrite_completion_id: bool = False
|
|
|
|
# Allow subclasses to control whether to download images and convert to base64
|
|
# for providers that require base64 encoded images instead of URLs.
|
|
download_images: bool = False
|
|
|
|
# Embedding model metadata for this provider
|
|
# Can be set by subclasses or instances to provide embedding models
|
|
# Format: {"model_id": {"embedding_dimension": 1536, "context_length": 8192}}
|
|
embedding_model_metadata: dict[str, dict[str, int]] = {}
|
|
|
|
# Cache of available models keyed by model ID
|
|
# This is set in list_models() and used in check_model_availability()
|
|
_model_cache: dict[str, Model] = {}
|
|
|
|
# List of allowed models for this provider, if empty all models allowed
|
|
allowed_models: list[str] = []
|
|
|
|
# Optional field name in provider data to look for API key, which takes precedence
|
|
provider_data_api_key_field: str | None = None
|
|
|
|
# automatically set by the resolver when instantiating the provider
|
|
__provider_id__: str
|
|
|
|
@abstractmethod
|
|
def get_api_key(self) -> str:
|
|
"""
|
|
Get the API key.
|
|
|
|
This method must be implemented by child classes to provide the API key
|
|
for authenticating with the OpenAI API or compatible endpoints.
|
|
|
|
:return: The API key as a string
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_base_url(self) -> str:
|
|
"""
|
|
Get the OpenAI-compatible API base URL.
|
|
|
|
This method must be implemented by child classes to provide the base URL
|
|
for the OpenAI API or compatible endpoints (e.g., "https://api.openai.com/v1").
|
|
|
|
:return: The base URL as a string
|
|
"""
|
|
pass
|
|
|
|
def get_extra_client_params(self) -> dict[str, Any]:
|
|
"""
|
|
Get any extra parameters to pass to the AsyncOpenAI client.
|
|
|
|
Child classes can override this method to provide additional parameters
|
|
such as timeout settings, proxies, etc.
|
|
|
|
:return: A dictionary of extra parameters
|
|
"""
|
|
return {}
|
|
|
|
@property
|
|
def client(self) -> AsyncOpenAI:
|
|
"""
|
|
Get an AsyncOpenAI client instance.
|
|
|
|
Uses the abstract methods get_api_key() and get_base_url() which must be
|
|
implemented by child classes.
|
|
|
|
Users can also provide the API key via the provider data header, which
|
|
is used instead of any config API key.
|
|
"""
|
|
|
|
api_key = self.get_api_key()
|
|
|
|
if self.provider_data_api_key_field:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data and getattr(provider_data, self.provider_data_api_key_field, None):
|
|
api_key = getattr(provider_data, self.provider_data_api_key_field)
|
|
|
|
if not api_key: # TODO: let get_api_key return None
|
|
raise ValueError(
|
|
"API key is not set. Please provide a valid API key in the "
|
|
"provider data header, e.g. x-llamastack-provider-data: "
|
|
f'{{"{self.provider_data_api_key_field}": "<API_KEY>"}}, '
|
|
"or in the provider config."
|
|
)
|
|
|
|
return AsyncOpenAI(
|
|
api_key=api_key,
|
|
base_url=self.get_base_url(),
|
|
**self.get_extra_client_params(),
|
|
)
|
|
|
|
async def _get_provider_model_id(self, model: str) -> str:
|
|
"""
|
|
Get the provider-specific model ID from the model store.
|
|
|
|
This is a utility method that looks up the registered model and returns
|
|
the provider_resource_id that should be used for actual API calls.
|
|
|
|
:param model: The registered model name/identifier
|
|
:return: The provider-specific model ID (e.g., "gpt-4")
|
|
"""
|
|
# Look up the registered model to get the provider-specific model ID
|
|
# self.model_store is injected by the distribution system at runtime
|
|
model_obj: Model = await self.model_store.get_model(model) # type: ignore[attr-defined]
|
|
# provider_resource_id is str | None, but we expect it to be str for OpenAI calls
|
|
if model_obj.provider_resource_id is None:
|
|
raise ValueError(f"Model {model} has no provider_resource_id")
|
|
return model_obj.provider_resource_id
|
|
|
|
async def _maybe_overwrite_id(self, resp: Any, stream: bool | None) -> Any:
|
|
if not self.overwrite_completion_id:
|
|
return resp
|
|
|
|
new_id = f"cltsd-{uuid.uuid4()}"
|
|
if stream:
|
|
|
|
async def _gen():
|
|
async for chunk in resp:
|
|
chunk.id = new_id
|
|
yield chunk
|
|
|
|
return _gen()
|
|
else:
|
|
resp.id = new_id
|
|
return resp
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: str | list[str] | list[int] | list[list[int]],
|
|
best_of: int | None = None,
|
|
echo: bool | None = None,
|
|
frequency_penalty: float | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
presence_penalty: float | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
guided_choice: list[str] | None = None,
|
|
prompt_logprobs: int | None = None,
|
|
suffix: str | None = None,
|
|
) -> OpenAICompletion:
|
|
"""
|
|
Direct OpenAI completion API call.
|
|
"""
|
|
# Handle parameters that are not supported by OpenAI API, but may be by the provider
|
|
# prompt_logprobs is supported by vLLM
|
|
# guided_choice is supported by vLLM
|
|
# TODO: test coverage
|
|
extra_body: dict[str, Any] = {}
|
|
if prompt_logprobs is not None and prompt_logprobs >= 0:
|
|
extra_body["prompt_logprobs"] = prompt_logprobs
|
|
if guided_choice:
|
|
extra_body["guided_choice"] = guided_choice
|
|
|
|
# TODO: fix openai_completion to return type compatible with OpenAI's API response
|
|
resp = await self.client.completions.create(
|
|
**await prepare_openai_completion_params(
|
|
model=await self._get_provider_model_id(model),
|
|
prompt=prompt,
|
|
best_of=best_of,
|
|
echo=echo,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
presence_penalty=presence_penalty,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
user=user,
|
|
suffix=suffix,
|
|
),
|
|
extra_body=extra_body,
|
|
)
|
|
|
|
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: list[OpenAIMessageParam],
|
|
frequency_penalty: float | None = None,
|
|
function_call: str | dict[str, Any] | None = None,
|
|
functions: list[dict[str, Any]] | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_completion_tokens: int | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
parallel_tool_calls: bool | None = None,
|
|
presence_penalty: float | None = None,
|
|
response_format: OpenAIResponseFormatParam | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
tool_choice: str | dict[str, Any] | None = None,
|
|
tools: list[dict[str, Any]] | None = None,
|
|
top_logprobs: int | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
|
"""
|
|
Direct OpenAI chat completion API call.
|
|
"""
|
|
if self.download_images:
|
|
|
|
async def _localize_image_url(m: OpenAIMessageParam) -> OpenAIMessageParam:
|
|
if isinstance(m.content, list):
|
|
for c in m.content:
|
|
if c.type == "image_url" and c.image_url and c.image_url.url and "http" in c.image_url.url:
|
|
localize_result = await localize_image_content(c.image_url.url)
|
|
if localize_result is None:
|
|
raise ValueError(
|
|
f"Failed to localize image content from {c.image_url.url[:42]}{'...' if len(c.image_url.url) > 42 else ''}"
|
|
)
|
|
content, format = localize_result
|
|
c.image_url.url = f"data:image/{format};base64,{base64.b64encode(content).decode('utf-8')}"
|
|
# else it's a string and we don't need to modify it
|
|
return m
|
|
|
|
messages = [await _localize_image_url(m) for m in messages]
|
|
|
|
params = await prepare_openai_completion_params(
|
|
model=await self._get_provider_model_id(model),
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
|
|
resp = await self.client.chat.completions.create(**params)
|
|
|
|
return await self._maybe_overwrite_id(resp, stream) # type: ignore[no-any-return]
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
model: str,
|
|
input: str | list[str],
|
|
encoding_format: str | None = "float",
|
|
dimensions: int | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
"""
|
|
Direct OpenAI embeddings API call.
|
|
"""
|
|
# Call OpenAI embeddings API with properly typed parameters
|
|
response = await self.client.embeddings.create(
|
|
model=await self._get_provider_model_id(model),
|
|
input=input,
|
|
encoding_format=encoding_format if encoding_format is not None else NOT_GIVEN,
|
|
dimensions=dimensions if dimensions is not None else NOT_GIVEN,
|
|
user=user if user is not None else NOT_GIVEN,
|
|
)
|
|
|
|
data = []
|
|
for i, embedding_data in enumerate(response.data):
|
|
data.append(
|
|
OpenAIEmbeddingData(
|
|
embedding=embedding_data.embedding,
|
|
index=i,
|
|
)
|
|
)
|
|
|
|
usage = OpenAIEmbeddingUsage(
|
|
prompt_tokens=response.usage.prompt_tokens,
|
|
total_tokens=response.usage.total_tokens,
|
|
)
|
|
|
|
return OpenAIEmbeddingsResponse(
|
|
data=data,
|
|
model=model,
|
|
usage=usage,
|
|
)
|
|
|
|
###
|
|
# ModelsProtocolPrivate implementation - provide model management functionality
|
|
#
|
|
# async def register_model(self, model: Model) -> Model: ...
|
|
# async def unregister_model(self, model_id: str) -> None: ...
|
|
#
|
|
# async def list_models(self) -> list[Model] | None: ...
|
|
# async def should_refresh_models(self) -> bool: ...
|
|
##
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
if not await self.check_model_availability(model.provider_model_id):
|
|
raise ValueError(f"Model {model.provider_model_id} is not available from provider {self.__provider_id__}")
|
|
return model
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
return None
|
|
|
|
async def list_models(self) -> list[Model] | None:
|
|
"""
|
|
List available models from the provider's /v1/models endpoint augmented with static embedding model metadata.
|
|
|
|
Also, caches the models in self._model_cache for use in check_model_availability().
|
|
|
|
:return: A list of Model instances representing available models.
|
|
"""
|
|
self._model_cache = {}
|
|
|
|
async for m in self.client.models.list():
|
|
if self.allowed_models and m.id not in self.allowed_models:
|
|
logger.info(f"Skipping model {m.id} as it is not in the allowed models list")
|
|
continue
|
|
if metadata := self.embedding_model_metadata.get(m.id):
|
|
# This is an embedding model - augment with metadata
|
|
model = Model(
|
|
provider_id=self.__provider_id__, # type: ignore[attr-defined]
|
|
provider_resource_id=m.id,
|
|
identifier=m.id,
|
|
model_type=ModelType.embedding,
|
|
metadata=metadata,
|
|
)
|
|
else:
|
|
# This is an LLM
|
|
model = Model(
|
|
provider_id=self.__provider_id__, # type: ignore[attr-defined]
|
|
provider_resource_id=m.id,
|
|
identifier=m.id,
|
|
model_type=ModelType.llm,
|
|
)
|
|
self._model_cache[m.id] = model
|
|
|
|
return list(self._model_cache.values())
|
|
|
|
async def check_model_availability(self, model: str) -> bool:
|
|
"""
|
|
Check if a specific model is available from the provider's /v1/models.
|
|
|
|
:param model: The model identifier to check.
|
|
:return: True if the model is available dynamically, False otherwise.
|
|
"""
|
|
if not self._model_cache:
|
|
await self.list_models()
|
|
return model in self._model_cache
|
|
|
|
async def should_refresh_models(self) -> bool:
|
|
return False
|