llama-stack-mirror/distributions/remote-vllm/compose.yaml
Josh Salomon 5f90be5388
fix: Fixed bad file name in inline::localfs (#1358)
Bug https://github.com/meta-llama/llama-stack/issues/1357

# What does this PR do?
Fix a bug of a wrong file name in inline::localfs datasetio provider

[//]: # (If resolving an issue, uncomment and update the line below)
# (Closes #1357)

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Josh Salomon <jsalomon@redhat.com>
2025-03-11 12:46:11 -07:00

99 lines
3.3 KiB
YAML

services:
vllm-inference:
image: vllm/vllm-openai:latest
volumes:
- $HOME/.cache/huggingface:/root/.cache/huggingface
network_mode: ${NETWORK_MODE:-bridged}
ports:
- "${VLLM_INFERENCE_PORT:-5100}:${VLLM_INFERENCE_PORT:-5100}"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=${VLLM_INFERENCE_GPU:-0}
- HUGGING_FACE_HUB_TOKEN=$HF_TOKEN
command: >
--gpu-memory-utilization 0.75
--model ${VLLM_INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
--enforce-eager
--max-model-len 8192
--max-num-seqs 16
--port ${VLLM_INFERENCE_PORT:-5100}
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:${VLLM_INFERENCE_PORT:-5100}/v1/health"]
interval: 30s
timeout: 10s
retries: 5
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
# A little trick:
# if VLLM_SAFETY_MODEL is set, we will create a service for the safety model
# otherwise, the entry will end in a hyphen which gets ignored by docker compose
vllm-${VLLM_SAFETY_MODEL:+safety}:
image: vllm/vllm-openai:latest
volumes:
- $HOME/.cache/huggingface:/root/.cache/huggingface
network_mode: ${NETWORK_MODE:-bridged}
ports:
- "${VLLM_SAFETY_PORT:-5101}:${VLLM_SAFETY_PORT:-5101}"
devices:
- nvidia.com/gpu=all
environment:
- CUDA_VISIBLE_DEVICES=${VLLM_SAFETY_GPU:-1}
- HUGGING_FACE_HUB_TOKEN=$HF_TOKEN
command: >
--gpu-memory-utilization 0.75
--model ${VLLM_SAFETY_MODEL}
--enforce-eager
--max-model-len 8192
--max-num-seqs 16
--port ${VLLM_SAFETY_PORT:-5101}
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:${VLLM_SAFETY_PORT:-5101}/v1/health"]
interval: 30s
timeout: 10s
retries: 5
deploy:
resources:
reservations:
devices:
- driver: nvidia
capabilities: [gpu]
runtime: nvidia
llamastack:
depends_on:
- vllm-inference:
condition: service_healthy
- vllm-${VLLM_SAFETY_MODEL:+safety}:
condition: service_healthy
image: llamastack/distribution-remote-vllm:test-0.0.52rc3
volumes:
- ~/.llama:/root/.llama
- ./run${VLLM_SAFETY_MODEL:+-with-safety}.yaml:/root/llamastack-run-remote-vllm.yaml
network_mode: ${NETWORK_MODE:-bridged}
environment:
- VLLM_URL=http://vllm-inference:${VLLM_INFERENCE_PORT:-5100}/v1
- VLLM_SAFETY_URL=http://vllm-safety:${VLLM_SAFETY_PORT:-5101}/v1
- INFERENCE_MODEL=${INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
- MAX_TOKENS=${MAX_TOKENS:-4096}
- SQLITE_STORE_DIR=${SQLITE_STORE_DIR:-$HOME/.llama/distributions/remote-vllm}
- SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
ports:
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
# Hack: wait for vLLM server to start before starting docker
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-remote-vllm.yaml --port 5001"
deploy:
restart_policy:
condition: on-failure
delay: 3s
max_attempts: 5
window: 60s
volumes:
vllm-inference:
vllm-safety:
llamastack: