mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
# What does this PR do? adds embedding and dynamic model support to Together inference adapter - updated to use OpenAIMixin - workarounds for Together api quirks - recordings for together suite when subdirs=inference,pattern=openai ## Test Plan ``` $ TOGETHER_API_KEY=_NONE_ ./scripts/integration-tests.sh --stack-config server:ci-tests --setup together --subdirs inference --pattern openai ... tests/integration/inference/test_openai_completion.py::test_openai_completion_non_streaming[txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:completion:sanity] instantiating llama_stack_client Port 8321 is already in use, assuming server is already running... llama_stack_client instantiated in 0.121s PASSED [ 2%] tests/integration/inference/test_openai_completion.py::test_openai_completion_non_streaming_suffix[txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:completion:suffix] SKIPPED [ 4%] tests/integration/inference/test_openai_completion.py::test_openai_completion_streaming[txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:completion:sanity] PASSED [ 6%] tests/integration/inference/test_openai_completion.py::test_openai_completion_prompt_logprobs[txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-1] SKIPPED [ 8%] tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free] SKIPPED [ 10%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:non_streaming_01] PASSED [ 12%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_01] PASSED [ 14%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_01] SKIPPED [ 17%] tests/integration/inference/test_openai_completion.py::test_inference_store[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-True] PASSED [ 19%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-True] PASSED [ 21%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming_with_file[txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free] SKIPPED [ 23%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_single_string[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 25%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_multiple_strings[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 27%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_float[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 29%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_dimensions[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 31%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_user_parameter[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 34%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_empty_list_error[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 36%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_invalid_model_error[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 38%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_different_inputs_different_outputs[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 40%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_base64[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 42%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_base64_batch_processing[openai_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 44%] tests/integration/inference/test_openai_completion.py::test_openai_completion_prompt_logprobs[txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-0] SKIPPED [ 46%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:non_streaming_02] PASSED [ 48%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_02] PASSED [ 51%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_02] SKIPPED [ 53%] tests/integration/inference/test_openai_completion.py::test_inference_store[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-False] PASSED [ 55%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[openai_client-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-False] PASSED [ 57%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_single_string[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 59%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_multiple_strings[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 61%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_float[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 63%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_dimensions[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 65%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_user_parameter[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 68%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_empty_list_error[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 70%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_invalid_model_error[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 72%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_different_inputs_different_outputs[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] PASSED [ 74%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_base64[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 76%] tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_base64_batch_processing[llama_stack_client-emb=together/togethercomputer/m2-bert-80M-32k-retrieval] SKIPPED [ 78%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:non_streaming_01] PASSED [ 80%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_01] PASSED [ 82%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_01] SKIPPED [ 85%] tests/integration/inference/test_openai_completion.py::test_inference_store[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-True] PASSED [ 87%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-True] PASSED [ 89%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:non_streaming_02] PASSED [ 91%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_02] PASSED [ 93%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-inference:chat_completion:streaming_02] SKIPPED [ 95%] tests/integration/inference/test_openai_completion.py::test_inference_store[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-False] PASSED [ 97%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[client_with_models-txt=together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free-False] PASSED [100%] ============================================ 30 passed, 17 skipped, 50 deselected, 4 warnings in 21.96s ============================================= ```
336 lines
13 KiB
Python
336 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from collections.abc import AsyncGenerator
|
|
|
|
from openai import NOT_GIVEN, AsyncOpenAI
|
|
from together import AsyncTogether
|
|
from together.constants import BASE_URL
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionRequest,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
OpenAIEmbeddingsResponse,
|
|
ResponseFormat,
|
|
ResponseFormatType,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.core.request_headers import NeedsRequestProviderData
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_message_to_openai_dict,
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
content_has_media,
|
|
interleaved_content_as_str,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import TogetherImplConfig
|
|
from .models import EMBEDDING_MODEL_ENTRIES, MODEL_ENTRIES
|
|
|
|
logger = get_logger(name=__name__, category="inference::together")
|
|
|
|
|
|
class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
|
def __init__(self, config: TogetherImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, MODEL_ENTRIES, config.allowed_models)
|
|
self.config = config
|
|
self._model_cache: dict[str, Model] = {}
|
|
|
|
def get_api_key(self):
|
|
return self.config.api_key.get_secret_value()
|
|
|
|
def get_base_url(self):
|
|
return BASE_URL
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: SamplingParams | None = None,
|
|
response_format: ResponseFormat | None = None,
|
|
stream: bool | None = False,
|
|
logprobs: LogProbConfig | None = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
def _get_client(self) -> AsyncTogether:
|
|
together_api_key = None
|
|
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
|
if config_api_key:
|
|
together_api_key = config_api_key
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.together_api_key:
|
|
raise ValueError(
|
|
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
|
|
)
|
|
together_api_key = provider_data.together_api_key
|
|
return AsyncTogether(api_key=together_api_key)
|
|
|
|
def _get_openai_client(self) -> AsyncOpenAI:
|
|
together_client = self._get_client().client
|
|
return AsyncOpenAI(
|
|
base_url=together_client.base_url,
|
|
api_key=together_client.api_key,
|
|
)
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
client = self._get_client()
|
|
r = await client.completions.create(**params)
|
|
return process_completion_response(r)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
client = self._get_client()
|
|
stream = await client.completions.create(**params)
|
|
async for chunk in process_completion_stream_response(stream):
|
|
yield chunk
|
|
|
|
def _build_options(
|
|
self,
|
|
sampling_params: SamplingParams | None,
|
|
logprobs: LogProbConfig | None,
|
|
fmt: ResponseFormat,
|
|
) -> dict:
|
|
options = get_sampling_options(sampling_params)
|
|
if fmt:
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
options["response_format"] = {
|
|
"type": "json_object",
|
|
"schema": fmt.json_schema,
|
|
}
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
raise NotImplementedError("Grammar response format not supported yet")
|
|
else:
|
|
raise ValueError(f"Unknown response format {fmt.type}")
|
|
|
|
if logprobs and logprobs.top_k:
|
|
if logprobs.top_k != 1:
|
|
raise ValueError(
|
|
f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided",
|
|
)
|
|
options["logprobs"] = 1
|
|
|
|
return options
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: list[Message],
|
|
sampling_params: SamplingParams | None = None,
|
|
tools: list[ToolDefinition] | None = None,
|
|
tool_choice: ToolChoice | None = ToolChoice.auto,
|
|
tool_prompt_format: ToolPromptFormat | None = None,
|
|
response_format: ResponseFormat | None = None,
|
|
stream: bool | None = False,
|
|
logprobs: LogProbConfig | None = None,
|
|
tool_config: ToolConfig | None = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
client = self._get_client()
|
|
if "messages" in params:
|
|
r = await client.chat.completions.create(**params)
|
|
else:
|
|
r = await client.completions.create(**params)
|
|
return process_chat_completion_response(r, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
client = self._get_client()
|
|
if "messages" in params:
|
|
stream = await client.chat.completions.create(**params)
|
|
else:
|
|
stream = await client.completions.create(**params)
|
|
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
llama_model = self.get_llama_model(request.model)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present or not llama_model:
|
|
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
|
|
else:
|
|
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
|
else:
|
|
assert not media_present, "Together does not support media for Completion requests"
|
|
input_dict["prompt"] = await completion_request_to_prompt(request)
|
|
|
|
params = {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**self._build_options(request.sampling_params, request.logprobs, request.response_format),
|
|
}
|
|
logger.debug(f"params to together: {params}")
|
|
return params
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: list[str] | list[InterleavedContentItem],
|
|
text_truncation: TextTruncation | None = TextTruncation.none,
|
|
output_dimension: int | None = None,
|
|
task_type: EmbeddingTaskType | None = None,
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
assert all(not content_has_media(content) for content in contents), (
|
|
"Together does not support media for embeddings"
|
|
)
|
|
client = self._get_client()
|
|
r = await client.embeddings.create(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_content_as_str(content) for content in contents],
|
|
)
|
|
embeddings = [item.embedding for item in r.data]
|
|
return EmbeddingsResponse(embeddings=embeddings)
|
|
|
|
async def list_models(self) -> list[Model] | None:
|
|
self._model_cache = {}
|
|
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
|
|
for m in await self._get_client().models.list():
|
|
if m.type == "embedding":
|
|
if m.id not in EMBEDDING_MODEL_ENTRIES:
|
|
logger.warning(f"Unknown embedding dimension for model {m.id}, skipping.")
|
|
continue
|
|
self._model_cache[m.id] = Model(
|
|
provider_id=self.__provider_id__,
|
|
provider_resource_id=EMBEDDING_MODEL_ENTRIES[m.id].provider_model_id,
|
|
identifier=m.id,
|
|
model_type=ModelType.embedding,
|
|
metadata=EMBEDDING_MODEL_ENTRIES[m.id].metadata,
|
|
)
|
|
else:
|
|
self._model_cache[m.id] = Model(
|
|
provider_id=self.__provider_id__,
|
|
provider_resource_id=m.id,
|
|
identifier=m.id,
|
|
model_type=ModelType.llm,
|
|
)
|
|
|
|
return self._model_cache.values()
|
|
|
|
async def should_refresh_models(self) -> bool:
|
|
return True
|
|
|
|
async def check_model_availability(self, model):
|
|
return model in self._model_cache
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
model: str,
|
|
input: str | list[str],
|
|
encoding_format: str | None = "float",
|
|
dimensions: int | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
"""
|
|
Together's OpenAI-compatible embeddings endpoint is not compatible with
|
|
the standard OpenAI embeddings endpoint.
|
|
|
|
The endpoint -
|
|
- does not return usage information
|
|
- does not support user param, returns 400 Unrecognized request arguments supplied: user
|
|
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
|
|
- does not support encoding_format param, always returns floats, never base64
|
|
"""
|
|
# Together support ticket #13332 -> will not fix
|
|
if user is not None:
|
|
raise ValueError("Together's embeddings endpoint does not support user param.")
|
|
# Together support ticket #13333 -> escalated
|
|
if dimensions is not None:
|
|
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
|
|
# Together support ticket #13331 -> will not fix, compute client side
|
|
if encoding_format not in (None, NOT_GIVEN, "float"):
|
|
raise ValueError("Together's embeddings endpoint only supports encoding_format='float'.")
|
|
|
|
response = await self.client.embeddings.create(
|
|
model=await self._get_provider_model_id(model),
|
|
input=input,
|
|
)
|
|
|
|
response.model = model # return the user the same model id they provided, avoid exposing the provider model id
|
|
|
|
# Together support ticket #13330 -> escalated
|
|
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
|
|
if not hasattr(response, "usage") or response.usage is None:
|
|
logger.warning(
|
|
f"Together's embedding endpoint for {model} did not return usage information, substituting -1s."
|
|
)
|
|
response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1)
|
|
|
|
return response
|